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Abstract

Several authors have argued that causes differ in the degree to which they

are ‘specific’ to their effects. Woodward has used this idea to enrich his

influential interventionist theory of causal explanation. Here we propose a

way to measure causal specificity using tools from information theory. We

show that the specificity of a causal variable is not well-defined without a

probability distribution over the states of that variable. We demonstrate the

tractability and interest of our proposed measure by measuring the specificity

of coding DNA and other factors in a simple model of the production of

mRNA.
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1 Causal Specificity

Several authors have argued that causes differ in the degree to which they

are ‘specific’ to their effects. The existing literature on causal specificity is

mostly qualitative and recognizes that the idea is not yet adequately precise

(e.g. Waters, 2007; Weber, 2006, 2013; Woodward, 2010). Marcel Weber has

suggested that the next step should be a quantitative measure of specificity

(2006, 606). In this article we examine how to measure specificity using tools

from information theory.

Causal specificity is often introduced by contrasting the tuning dial and

the on/off switch of a radio. Hearing the news is equally dependent on the

dial (or digital tuner) taking the value ‘576’ and on the switch taking the

value ‘ON’. But the dial seems to have a different kind of causal relationship

with the news broadcast than the switch. The switch is a non-specific cause,

whereas the dial (or digital tuner) is a specific cause. The difference has

something to do with the range of alternative effects that can be produced

by manipulating the tuner, as opposed to manipulating the switch.

Another widely discussed example of specific and non-specific causes con-

trasts a coding sequence of DNA with other factors involved in DNA tran-

scription and translation (e.g. Waters, 2007). But this example has to be

carefully tailored to produce the desired intuition about specificity (Griffiths

& Stotz, 2013). In Section 5 we will show that the causal specificity of coding

sequences of DNA differs dramatically in different cases.

Like most of the recent literature, our account of causal specificity makes

use of Woodward’s interventionist theory of causal explanation (Woodward

2003). We will give only the briefest summary of Woodward’s theory here,

since it should be well known to the presumptive audience for this paper and

Woodward has provided a succinct and readily accessible summary online

(Woodward 2012). Woodward construes causation as a relationship between

variables in a scientific representation of a system. There is a causal relation-
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ship between variables X and Y if it is possible to manipulate the value of

Y by intervening to change the value of X. ‘Intervention’ here is a technical

notion with various restrictions. For example, changing a third variable Z

that simultaneously changes X and Y does not count as ‘intervening’ on

X. Causal relationships between variables differ in how ‘invariant’ they are.

Invariance is a measure of the range of values of X and Y across which the

relationship between X and Y holds. But even relationships with very small

ranges of invariance are causal relationships.

Both Kenneth Waters (2007) and Woodward (2010) have suggested that

causal specificity is related to ‘causal influence’ (Lewis 2000 and see Sec-

tion 2). A causal variable has ‘influence’ on an effect variable if a range of

values of the cause produces a range of values of the effect, as in the example

of the tuner. However, whilst Lewis proposed that ‘influence’ distinguishes

causes from non-causes, for Woodward it merely marks out causes that are

particularly apt for intervention.

Although Woodward (2010) gives the most complete account of speci-

ficity to date there remains much to be done, as he recognizes. Marcel We-

ber has suggested that causal specificity is merely a variety of Woodward’s

invariance. A variable is a more specific cause of some other variable, Weber

suggests, to the extent that the causal relationship between cause and effect

variables is invariant across the range of values of both variables, and to the

extent that the two variables have large ranges of values (Weber, 2006, 606).

Woodward disagrees, arguing that a causal relationship with these proper-

ties may fail to meet some of the other conditions we discuss below, such as

being a bijective1 function from cause variable to effect variable (Woodward,

2010 fn17). An attempt to quantify specificity is one obvious way to move

discussion forward. As we will see below, the points that Weber and Wood-
1A function mapping causes to effects will be injective if no effect has more than one

cause; surjective if every effect has at least one cause; bijective if it is both injective and

surjective – every effect has one and only one cause, and vice versa.
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ward are making become much clearer when expressed using a quantitative

measure.

A skeptical reader may wonder why the apparently elusive notion of

causal specificity deserves such effort. Our motivation is the same as that of

Waters and Weber: clarifying the notion of causal specificity may elucidate

the notion of biological specificity, and facilitate the study of specificity in

actual biological systems. The term ‘specificity’ entered biology in the 1890s

in response to the extraordinary precision of biochemical reactions, such as

the ability to produce an immune response to a single infective agent, or the

ability of an enzyme to interact with just one substrate. By the 1940s biolog-

ical specificity had come to be identified with the precision of stereochemical

relationships between biomolecules. In 1958, however, Francis Crick’s theo-

retical breakthrough in understanding protein synthesis introduced a com-

plementary conception of specificity, sometime referred to as ‘informational

specificity’. Stereochemical specificity results from the unique, complex 3-

dimensional structure of a molecule that allows some molecules but not other

to bind to it and interact. In contrast, informational specificity is produced

by exploiting combinatorial complexity within a linear sequence, which can

be done with a relatively simple and homogenous molecule such as DNA (see

Griffiths & Stotz 2013, Ch3).

The notion of causal specificity in philosophy of science was not intro-

duced with any a priori assumption that it is the same thing as biological

specificity. However, Waters has used the idea of causal specificity to argue

that DNA encodes biological specificity for gene products, unlike other fac-

tors involved in making those products (Waters, 2007). In contrast, Stotz

and Griffiths have used causal specificity to argue that the biological speci-

ficity for a gene product is distributed across several of these factors (Griffiths

& Stotz, 2013; Stotz, 2006).

A merely intuitive approach to causal specificity is unlikely to be helpful
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in settling disputes like this. In Section 5 we show that a quantitative ap-

proach may allow a more definitive resolution. At the very least, it makes

clear which assumptions are driving the different conclusions reached by the

protagonists.

2 Specificity and Information

Causal specificity has been characterized by Woodward as a property of the
mapping between causes and effects:

My proposal is that, other things being equal, we are inclined to think of C

as having more rather than less influence on E (and as a more rather than

less specific cause of E) to the extent that it is true that:

(INF) There are a number of different possible states of C (c1... cn), a

number of different possible states of E (e1... em) and a mapping F from

C to E such that for many states of C each such state has a unique image

under F in E (that is, F is a function or close to it, so that the same state of

C is not associated with different states of E, either on the same or different

occasions), not too many different states of C are mapped onto the same

state of E and most states of E are the image under F of some state of C.

(Woodward, 2010, 305)

We propose to quantify Woodward’s proposal that a cause becomes more

specific as the mapping of cause to effect resembles a bijection.

We start from the simple idea that the more specific the relationship

between a cause variable and an effect variable, the more information we

will have about the effect after we perform an intervention on the cause.

Starting from this idea, we can apply the tools of information theory to

measure some properties of causal mappings that relate values of the cause

to values of the effect. For simplicity, we restrict ourselves to variables that

take nominal values, with no obvious metric relating the diverse values. 2

2Variants of our approach to causal specificity are possible for metric variables. The

analysis of variance, for example, gives measures that are respectively equivalent to en-

tropy, conditional entropy and mutual information. The information theoretic approach
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One property we can measure in this way is Woodward’s INF. Rather than

describing a relationship as injective or bijective, information theory allows

us to express the tendency towards a bijective relationship as a continuous

variable. Thus, our informational measure of specificity will preserve the

essence of Woodward’s proposal while allowing this desirable flexibility.

We use the term ‘information’ in the classic sense of a reduction of un-

certainty (Shannon & Weaver 1949). In information theory, the uncertainty

about an event can be measured by the entropy of the probability distribu-

tion of events belonging to the same class (see Box 1). Uncertainty about

the outcome of throwing a die is measured by the entropy of the probability

distribution of the six possible outcomes. Maximum entropy occurs when all

six faces of the die have equal probabilities. If the die is loaded, the entropy

is smaller and there is less uncertainty about the outcome, because one side

is more probable than the others.

Applying this framework to a causal relationship allows one to measure

how much knowing the value set by an intervention on a causal variable re-

duces one’s uncertainty about the value of an effect variable. We can measure

this reduction of uncertainty by comparing the entropy of the probability dis-

tribution of the value of the effect before and after knowing the value of the

cause set by an intervention. The more the difference in entropies, the more

our uncertainty has been reduced. The maximum reduction of uncertainty

occurs when we start from complete ignorance (i.e., maximum entropy) and

when, after knowing the value of the cause set by an intervention, we end up

with a completely specified value for the effect (null entropy – for instance,

when a die is so heavily loaded that it always comes up 6).

taken here is more general, but the analysis of variance retains more information about

the metric (see Garner & McGill 1956 for a comparison). Information theoretic variants

have also been developed to deal with continuous variables (e.g. Reshef et al. 2011; Ross

2014).
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Box 1. A primer on information theory

Information theory provides us with tools to measure uncertainty, and to mea-
sure the reduction of that uncertainty. Importantly, for our purposes, it tells
us how information about the value of one variable can reduce the uncertainty
about the value of another, related, variable.
The simplest case occurs when a discrete variable has only two values, which
can then be known by answering a single question (e.g. by yes or no). The
answer is said to convey one unit of information (a bit). If the set of possible
values for the variable now contains 2n equally likely elements, we can remark
that n dichotomous questions (n bits) are needed to determine the actual value
of the variable. The quantity of information contained in knowing the actual
value is thus n = log2 (2

n). If we adopt a probabilistic framework where each
possible value has equal probability p = 1/2n, we can say that knowing any
actual value of the variable brings − log2 p bits of information. When the
values are not equiprobable, the average information gained by knowing an
actual value of the variable is measured as an average over the probabilities of
the different values. This quantity is the entropy of the probability distribution
of the variable, defined as:

H (X) = −
N∑
i=1

p (xi) log2 p (xi)

where xi represent values of the variable X and N is the number of different
values. Entropy measures the uncertainty about the value of the variable and
is always non-negative. Uncertainty is maximised (maximum entropy) when
each value is equiprobable. Departing from uniformity will always make one
(or more) values more probable, and so decrease uncertainty. In a similar way,
increasing the number of possible values will increase uncertainty. All of the
above can be generalized to cases where the number of possible values is not
a power of 2.
If X and Y are two random variables (with respectively N and M different
values, noted xi, yj), we can define the entropy of the couple X, Y :

H (X,Y ) = −
N∑
i=1

M∑
j=1

p (xi, yj) log2 p (xi, yj)
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Box 1. (Continued)

This enables us to define the conditional entropy, representing the amount of
uncertainty remaining on Y when we already know X:

H (Y |X ) = H (X,Y ) –H (X)

= −
N∑
i=1

p(xi)

M∑
j=1

p(yj |xi) log2 p(yj |xi)

In a similar way, the mutual information, that is, the amount of redundant
information present in X and Y is obtained by:

I (X;Y ) = H (X) +H (Y )−H (X,Y )

=

N∑
i=1

M∑
j=1

p(xi, yj) log2
p(xi, yj)

p(xi)p(yj)

Mutual information can be thought of as the amount of information that one
variable, X, contains about the other, Y (normalized variants of mutual infor-
mation are available).
Conditional entropy is null, and mutual information is maximal, when Y is
completely determined by X. Note that conditional entropy is generally asym-
metric while mutual information is always symmetric:

H (X|Y ) 6=H (Y |X)

I (X;Y ) = I (Y ;X)

The relationships between these three different measures are represented in
figure 1. See Cover and Thomas (2012) for more detail.

Figure 1: Diagram of the relationships between the different infor-

mational measures, entropy H (X), conditional entropy H (X|Y )

and mutual information I (X;Y ).
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These ideas can be illustrated with simple diagrams showing how different

values of a causal variable (C) map to different values of an effect variable

(E). We draw the reader’s attention to the fact that these diagrams are

causal mappings rather than conventional causal graphs. Nodes represent

values of variables, rather than variables, as they would in a causal graph.

Likewise, arrows do not represent causal connections between variables, as

they would in a causal graph. An arrow connecting a value of a cause to

a value of an effect means that interventions which set the cause to that

value will lead to the effect having that value, with some probability. For

instance, the arrow stemming from ci and pointing to ej corresponds to the

joint event (ĉi, ej) with probability p (ĉi, ej). The hat in the formula means

that the value ci is fixed by an ‘atomic’ intervention (see Box 2).

For ease of presentation, we will make some simplifying assumptions:

1. We consider only cases where we start from complete ignorance about

the effect (maximum entropy).

2. We assume that all causal values, arrows, and effect values, are equiprob-

able.

3. We consider only cases relating one cause and one effect, ruling out the

possibility of confounding factors. However, the same measures could

be used in cases with confounding factors, as atomic interventions on

the causal value will break the confounding influence of such factors

on the association between values of the cause and values of the effect.

The simplest case is a bijection, where each value of the cause corresponds

to one value of the effect and vice versa (see figure 2). Here, complete

ignorance (maximum entropy) obtains when each value of the effect has a
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probability of ½ before knowing the value set by the intervention on the cause:

H(E) = −
2∑

j=1

p(ej) log2 p(ej)

= −
2∑

j=1

1

2
log2

(
1

2

)
= 1 [bit ]

After knowing the value of the cause set by the intervention (say, ĉ1), the

effect is now fully specified (it is e1 with probability 1), and the conditional

entropy is:

H
(
E
∣∣∣Ĉ ) = −

2∑
i=1

p(ĉi)
2∑

j=1

p(ej |ĉi) log2 p(ej |ĉi)

= −
2∑
1

1

2

{
1 log2 (1) + 0 log2 (0)

}
= 0 [bit ]

The information gained by knowing the cause can be obtained by measur-

ing the difference between the entropy before and the entropy after knowing

the value set for the cause by the intervention. This quantity is the mutual

information between E and Ĉ:

I
(
E; Ĉ

)
= H (E) –H

(
E
∣∣∣Ĉ ) = 1 [bit ]

These three quantities H (E), H
(
E
∣∣∣Ĉ ), and I

(
E; Ĉ

)
characterize in-

teresting properties of the causal mapping above. The entropy, H (E) mea-

sures how large and even the repertoire of possible effects is. It is the amount

of information that can be gained by totally specifying an effect among a set

of possible effects (here, this is one bit). The conditional entropy H
(
E
∣∣∣Ĉ )

characterizes the remaining uncertainty about an effect when the value set

for the cause is known, (here it is fully specified, so the uncertainty is 0

bit). Finally, the mutual information I
(
E; Ĉ

)
measures the extent to which

knowing the value set for the cause specifies the value of the effect (here,

knowing the value of the cause brings 1 bit of information).

Another simple case is where any value of the cause can lead to any value

of the effect (see figure 3). We only present this as a limiting case, because
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Box 2: Causal modeling

Causal modeling provides us with the tools to track the effects of interventions
on a system. Where statistical modeling would look at statistical associations
between supposed causes and supposed effects, causal modeling introduces the
requirement of intervening on the system to compute the causal effect. More
precisely, consider a causal model consisting of:

1. a set of functional relationships xi = f(pai, ui), i = 1. . .n, where xi is
the value of the variable Xi being caused by Xi’s parent variables pai,
according to some function f , given some background conditions ui

2. a joint distribution function P (u) on the background factors.

Then the simplest ‘atomic’ intervention consists in forcing Xi to take some
value xi irrespective of the value of the parent variables pai, keeping everything
else unchanged. Such an intervention can be written formally with the do()

operator. As Pearl writes: “Formally, this atomic intervention, which we
denote by do(Xi = xi) or do(xi) [or x̂i] for short, amounts to removing the
equation xi = f(pai, ui) from the model and substituting Xi = xi in the
remaining equations. The new model when solved for the distribution of Xj ,
yields the causal effect of Xi on Xj , which is denoted P (xj |x̂i).” (Pearl 2009,
70)
The causal effect P (xj |x̂i) is to be contrasted with the observational con-
ditional probability P (xj |xi), which can be affected by confounding factors
leading to spurious associations or spurious independence.
Other recent works in mathematics and computer sciences have brought infor-
mation theory together with causal modeling to study information processing
in complex systems (Ay & Polani, 2008; Lizier & Prokopenko, 2010). These
works also builds on Pearl (2009), and are consistent with the work presented
here. However, our approach and measures are significantly different, reflect-
ing the fact that we start from a concern with ‘causal selection’ in a context
of intervention and control. The differences between these approaches will be
explored in a future paper.
See Pearl (2009, esp. chapter 3) for more details.
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Figure 2: Bijection between causal values and effect values.

Figure 3: Any value of the cause can lead to any value of the effect.

manipulating the value of C between c1 and c2 would have no effect on the

value of E, and so C is not a cause of E on the interventionist account. In

this case, as in the previous case:

H (E) = −
2∑
1

1

2
log2

(
1

2

)
= 1 [bit ]

Because in this case knowing the value set by an intervention on C gives

no information about the value of E, the conditional entropy H
(
E
∣∣∣Ĉ ) is

equal to H (E) (our uncertainty is unchanged):

H
(
E|Ĉ

)
= −

2∑
1

1

2

2∑
1

1

2
log2

(
1

2

)
= 1 [bit ]

Thus, the information gained by knowing the value set for C is nil (C is

entirely non-specific):

I
(
E; Ĉ

)
= H (E) –H

(
E|Ĉ

)
= 0 [bit ]

Notice that we can approach this null mutual information as a limit of

a genuine cause whose different values make decreasingly small differences
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Figure 4: A single value of the cause can lead to more than one

value of the effect.

as regards the value of the effect. This implies that specificity and the

interventionist criterion of causation are not fully independent.

These two cases, bijection (figure 2) and exhaustive connection (figure 3)

illustrate limit cases of Woodward’s ‘degree of bijectivity’ of causal mappings.

We can go further by examining two slightly more complicated cases.

The first is where each value of a cause leads to a proper set of values of the

effect (see figure 4). In this case the maximum uncertainty about the effect

is larger:

H (E) = −
4∑
1

1

4
log2

(
1

4

)
= 2 [bits]

Furthermore, knowing the cause less than fully specifies the effect. As-

suming equiprobability between the two effect values that can be produced

by a single value of the cause, the conditional entropy H
(
E
∣∣∣Ĉ ) is:

H
(
E
∣∣∣Ĉ ) = −

2∑
i=1

p(ĉi)

4∑
j=1

p(ej |ĉi) log2 p(ej |ĉi)

= −
2∑
1

1

2

{
2

(
1

2
log2

(
1

2

))
+ 2 (0 log2 (0))

}
= 1 [bit ]

Thus, the information about the effect gained by knowing the cause is:

I
(
E; Ĉ

)
= H (E) –H

(
E
∣∣∣Ĉ ) = 1 [bit ]
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Figure 5: Different values of the cause lead to the same outcome.

Notice that knowing the value of the cause provides as much information

about the effect as in figure 2, but because the repertoire of effects is larger,

the remaining uncertainty – H
(
E
∣∣∣Ĉ ) – is not null anymore. The repertoire

of effects will be larger if, for instance, we increase the level of detail when

describing effects (compare a game of dice based on odd versus even outcomes

to a game based on the values of the six individual faces).

Let us now consider the symmetric case (see figure 5). As in figure 2 and

figure 3, if we suppose complete ignorance of the effects:

H (E) = 1 [bit ]

Although in figure 5 two values of the cause can lead to the same effect,

knowing the value of the cause fully specifies the value of the effect just as

effectively as it does in figure 2. Thus:

H
(
E
∣∣∣Ĉ ) = 0 [bit ]

Therefore, the difference in uncertainty about the effect between not

knowing the value of the cause and knowing it is:

I
(
E; Ĉ

)
= 1 [bit ]
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Here again, knowing the cause provides as much information about the

effects as in figure 2, but because the repertoire of states of the causal variable

is now larger, some values lead to the same effects (this can happen if we

increase the level of detail in our description of the cause). Notice that this

will not matter if we are interested in controlling the value of the effect:

applying c1 or c2 will deterministically lead to e1.

Furthermore, we can distinguish between figure 2 and figure 5 if we intro-

duce a fourth quantity, that is, the entropy characterizing the repertoire of

the cause, which in these two cases is the maximum entropy. In figure 2 the

entropy H
(
Ĉ
)
= 1 [bit ] whereas in figure 5, H

(
Ĉ
)
= −

∑4
1
1/4 log2 (1/4) =

2 [bits].

Thus, both the conditional entropy H
(
E
∣∣∣Ĉ ) and the mutual informa-

tion I
(
E; Ĉ

)
capture aspects of the intuition that causes differ in ‘speci-

ficity’. Because the prior uncertainty H (E) is not constant – it depends in

particular on the size of the repertoire of effects – both measures are needed

to understand how much a cause specifies an effect (this is given by I
(
E; Ĉ

)
)

and how much an effect is specified when knowing the value set for the cause

(given by H
(
E
∣∣∣Ĉ )).

In the cases considered here, if H
(
E
∣∣∣Ĉ ) = 0 then manipulating C pro-

vides complete control over E. This corresponds to Woodward’s observation

(2010, 305) that it is more important that the mapping from C to E is a

surjective function than that it is also bijective. Woodward’s notion of a

fine-grained control, however, would be better represented using H (E) and

I
(
E; Ĉ

)
. That is, fine-grained control requires that the repertoire of effects

is large and that a cause screens off many of them (recall that we are cur-

rently dealing only with nominal variables). In the ideal case, H (E) would

tend toward infinity and I
(
E; Ĉ

)
would tend toward H (E).
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3 Comparing Two Variables

We now have a proposal for a measure of causal specificity:

SPEC: the specificity of a causal variable is obtained by measur-

ing how much mutual information interventions on that causal

variable carry about the effect variable.

It is important to note that, whilst mutual information is a symmetric

measure: I(X;Y ) = I(Y ;X), the mutual information between an interven-

tion and its effect is not symmetrical because the fact that interventions on C

change E does not imply that interventions on E will change C: in general,

I(Ĉ;E)6=I(Ê;C).

Recall that the aim of producing a measure of causal specificity was to

use it to compare different causes of the same effect. So we need to look at

a case where an effect depends on more than one upstream causal variable,

and compare the mutual information they carry. To do so we will explore

some increasingly complex cases involving gene transcription. In each case

we focus on (messenger) RNA as the effect variable, and look at the relative

specificity of different upstream causal variables.

We begin with a simple case that has already been discussed in the

literature, namely comparing the causal contributions of RNA polymerase

and DNA coding sequences to the structure of a messenger RNA (Waters,

2007). Both are causes of RNA, since manipulating either makes a difference

to the RNA. Polymerase is like the radio on/off button, and the DNA is like

the channel tuner, with a number of settings.3

We can formalise this in the following way (figure 6). There are two causal

variables, DNA and POL, and one effect variable, RNA. Each variable can
3Because we do not impose an order on the values of the DNA variable, it is more

like a digital tuner, to which any combination of digits can be entered, than an analogue

tuning dial.
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Figure 6: Causal mapping and probability distributions for DNA

and RNA (left) and POL and RNA (right).

take on a number of values. Assume, for now, that there are four possible

DNA sequences (d1, d2, d3, d4), and that the RNA polymerase is either

present or absent . Our effect variable can thus take on five values—four

correspond to the RNA sequences (r1, r2, r3, r4) transcribed from the DNA,

and one is a state we will call r0, that occurs when there is no transcription.

In order to calculate the mutual information, we need to assign each of the

values a probability, and these must sum to 1. We begin by simply assigning

uniform probabilities over the causal variables, DNA and POL. What does

our specificity measure tell us about the two causal variables in this simple

scenario?

When we do the calculation (see Supplementary Online Materials §1),

interventions on either DNA or POL carry the same amount of mutual in-

formation:

I
(
D̂NA;RNA

)
= p

(
P̂OL

)
×H

(
D̂NA

)
= 0.5× 2 = 1 [bit ]

I
(
P̂OL;RNA

)
= H

(
P̂OL

)
= 1 [bit ]

They are (given our working assumptions) equally causally specific. That

might seem odd, as the DNA sequences can take on four different values,

and the Polymerase is simply ′present ′ or ′absent ′. Our measurement seems

18



to be saying there is no difference between on/off switches and tuning knobs.

What has gone wrong?

To understand why this happens, recall that mutual information mea-

sures how much information on average we get by looking at a causal variable.

Notice that the value of D̂NA is irrelevant if P̂OL = ′absent ′, and our uni-

form distribution sets the probability of this at 0.5. So half the time, when

we look at the value of D̂NA, we learn nothing about the system. When

P̂OL = ′present ′, knowing the value of D̂NA is useful: it delivers 2 bits of

information. In short, half the time, D̂NA gives us 0 bits of information, and

the other half of the time 2 bits. Hence, 1 bit on average.

What this shows is that our proposed measure for causal specificity is sen-

sitive to the probability distribution of the causal variables. This means that

either our specificity measure is incorrect, or Woodward’s INF (Section 2) is

missing something, because that condition makes no mention of the proba-

bility distributions over the variables. In the next section we will see that

this dilemma corresponds to two different approaches to causal specificity.

4 Specific Actual Difference Making

The suggestion that the actual probability distributions of the causal vari-

ables matters when assessing which causes are significant is an idea we have

heard before. Waters argues that in order to pick out the significant causes,

you need to know the actual difference makers. For example, even when it is

possible to manipulate POL (which identifies it as a potential cause), if there

is no actual difference in POL in a population of cells, as Waters assumes,

then it is not a significant cause. Waters notion of an “actual difference

maker” (Waters, 2007, 567) can be related to our specificity measure.

Waters treats the question of whether a variable exhibits actual variation

as though it were a binary choice, but it makes sense to treat it as continuous.

The ‘actual variation’ is the entropy of the variable.
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Figure 7: Effects of changing probability of P̂OL = ′present ′ on

several informational measures: the entropy of RNA (the effect),

the mutual information between RNA and D̂NA, and the mu-

tual information between RNA and intervening on the presence of

polymerase. It can be shown that H (RNA) = I
(
RNA, D̂NA

)
+

I
(
RNA, P̂OL

)
= p

(
P̂OL

)
× H

(
D̂NA

)
+ H

(
P̂OL

)
(see Supple-

mentary Online Materials §1). The variation in the effect can thus

here be decomposed into the respective contributions of the causes.
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To show how this idea fits into our specificity measure, consider how the

mutual information (specificity) of each of our two variables D̂NA and P̂OL

with RNA changes as we vary the probability distribution of P̂OL (which,

in turn varies its entropy). In figure 7, each value on the X axis represents a

different case. These range from cases where the probability of ′present ′ is 0

(Polymerase is never around) to systems where the probability of ′present ′

is 1 (Polymerase is always around). In these extreme cases, the variable

has become a fixed background factor and doesn’t actually vary, and thus

the entropy H
(
P̂OL

)
is 0. When the probability of ‘present ’ is 0.5, P̂OL

is maximally variable, and has maximum entropy. The mutual information

between P̂OL and RNA is also maximized at this point. Notice also, that as

we increase p (present) to 1, the mutual information between D̂NA and RNA

increases. When P̂OL = present all the time, the full 2 bits of information

about RNA can be found in D̂NA.

Our proposed measure of specificity captures two things: the extent to

which a relationship approaches a bijection (Woodward’s INF) and the de-

gree to which the cause is an actual difference maker (i.e. the cause also

has high entropy). So the mutual information measure appears to capture

the degree to which a cause is a ‘specific actual difference maker’, or SAD

(Waters, 2007).

Within our information theoretic framework there is a clear difference

between the SAD concept and Woodward’s INF. SAD uses the actual prob-

ability distribution over the values of a causal variable in some population.

INF makes no distinction between the states of a causal variable. We will

represent this by supposing that the variable has maximum entropy: all its

states are equiprobable. This makes sense when we recall that for Wood-

ward causal variables are sites of intervention. For an idealised external

agent intervening on the system, the value of a causal variable is whatever

they choose to make it.
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It is possible to find different scientific contexts in which biologists seem

to approach causal relationships in ways that correspond to SAD and INF

respectively. Waters argues that classical genetics of the Morgan school

was only concerned to characterize causes which actually varied in their

laboratory populations (Waters, 2007). Griffiths and Stotz argue that some

work in behavioral developmental and much work in systems biology sets out

to characterize the effect on the system of forcing all causal variables through

their full range of potential variation (Griffiths & Stotz, 2013, 198-9). This

kind of research, they argue, is done with the aim of discovering new ways to

intervene in complex systems. The information theoretic framework allows

us to distinguish between the specificity of potential (INF) and actual (SAD)

difference-makers.

Our measure of causal specificity sheds light on another issue that we dis-

cussed in our introduction. Weber proposed that the specificity of a causal

relationship is simply the range of values of the variables across which a

causal relationship holds, or what Woodward calls the “range of invariance”

(Woodward 2003, 254). Woodward rejected this idea because a causal rela-

tionship might hold across a large range of invariance but fail to be bijective.

Our information theoretic framework captures both why Weber makes this

suggestion and why Woodward’s additional condition is needed. Weber’s

point corresponds to the fact that mutual information between cause and ef-

fect variables will typically be greater when these variables have more values,

simply because the entropy of both variables is higher. Woodward’s caveat

corresponds to the fact that it will not do to increase the number of values of

a cause variable unless the additional values of the cause map onto distinct

values of the effect. Increasing the entropy of the cause variable will not in-

crease mutual information when no additional entropy in the effect variable

is captured. This is why the mutual information between the variables is

the same in figure 2 and in figure 5. In terms of the diagram in Box 1, such
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an increase in the size of region H (X) would be confined to the sub-region

H (X|Y ) with no increase in sub-region I (X;Y ). The same point, of course,

holds mutatis mutandis for the effect variable.

In addition to the SAD and INF conceptions of specificity, there is a third

option corresponding to a suggestion by Weber that causal specificity should

be assessed on the assumption that causal variables are neither restricted

to their actual variation in some population, nor allowed to vary freely, but

instead restricted to their ‘biologically normal’ range of variation: “What we

need is a distinction between relevant and irrelevant counterfactuals, where

relevant counterfactuals are such that they describe biologically normal possi-

ble interventions” (Weber, 2013, 7, his italics). We will call this REL. Weber

tells us that a biologically normal intervention must (1) involve a naturally

occurring causal process and (2) not kill the organism. More work is ob-

viously needed to make this idea precise, but we will see in Section 5 that

even in this crude form REL provides a useful framework for modeling actual

cases. At a practical level, we interpret REL as assessing causal specificity

with uniform probability distributions within the range of variation in the

variable that would be produced by known mechanisms acting on relevant

timescales for the causal processes we are trying to model.

5 Distributed Causal Specificity

We have suggested that causal specificity can be measured by the amount

of mutual information between variables representing cause and effect. This

implies that the degree of specificity of a causal relationship depends on the

probability distributions over the two variables, and we have argued that this

relates to Waters’ claim that significant causes are specific actual difference

makers. We have also taken on board Weber’s point that it may be more

interesting to explore, not the strictly actual variation, but the ‘biologically

normal’ variation (REL). In this section we apply our measure to a more
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complex case than the roles of RNA polymerase and DNA in the production

of RNA, namely the role of splicing factors and DNA in the production of

alternatively spliced mRNA. Importantly, we shall also attempt to fill out

these measures with realistic values.

In contemporary molecular biology the image of the gene as a simple

sequence of coding DNA with an adjacent promoter region is very much a

special case. This image remains important in the practice of annotating

genomes with ‘nominal genes’ – regions that resemble reasonably closely the

textbook image (Burian, 2004; Fogle, 2000; Griffiths & Stotz, 2007; Grif-

fiths & Stotz 2013). But a more representative image of the gene, at least

in eukaryotes, is a complex region of DNA whose structure is best under-

stood top-down in light of how that DNA can be used in transcription and

translation to make a range of products. Multiple promoter regions allow

transcripts of different lengths to be produced from a single region. This

and other mechanisms allow the same region to be transcribed with differ-

ent reading frames. mRNA editing allows single bases in a transcript to be

changed before translation. Trans-splicing allows different DNA regions to

contribute components to a single mRNA. Here, however, we will concen-

trate on the most ubiquitous of these mechanisms, alternative cis-splicing, a

process known to occur, for example, in circa 95% of human genes (nominal

genes)4.

Genes are annotated with two kinds of regions, exons and introns. The

typically much larger introns are cut out of the corresponding mRNA and

discarded. In alternative cis-splicing (hereafter just ‘splicing’) there is more

than one way to do this, giving rise to a number of different proteins or

functional RNAs. For simplicity, we will ignore mechanisms such as exon
4For more detail on all these processes, see (Griffiths and Stotz, 2013). It may be useful

to know that the prefix trans- denotes processes involving a different region of the DNA,

whilst the prefix cis- denotes processes involving the same or an immediately adjacent

region.
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repetition or reversal, and the fact that exon/intron boundaries may vary,

and treat this process as if it were simply a matter of choosing to include or

omit each of a determinate set of exons in the final transcript.

With alternative splicing, the final product is co-determined by the cod-

ing region from which the transcript originates and some combination of

trans-acting factors which bind to the transcript to determine whether cer-

tain exons will be included or excluded. These factors are transcribed from

elsewhere in the genome, and their presence at their site of action requires the

activation of those regions and correct processing, transport and activation

of the product. The entire process thus exemplifies the themes of ‘regulated

recruitment and combinatorial control’ characteristic of much recent work on

the control of genome expression (Griffiths & Stotz 2013; Ptashne & Gann

2002). We will simplify this by representing alternative splicing as a sin-

gle variable each of whose values correspond to a set of trans-acting factors

sufficient to determine a unique splice-variant.

The role of alternative splicing is well known, but recent work on causal

specificity does not treat this issue with much care. Weber states that, “De-

pending on what protein factors are present, a cell can make a considerable

variety of different polypeptides from the same gene. Thus we have some

causal specificity, but it is no match for the extremely high number of differ-

ent protein sequences that may result by substituting nucleic acids” (Weber,

2006 endorsed by Waters, 2007, fn28). Here Weber seems to be making a

problematic comparison of the actual range of splicing variants present in

a single organism with the possible genetic variants that could be produced

by mutation. Recently, Weber has explicitly argued for this comparison, ar-

guing that only ‘biologically normal’ interventions should be considered and

that variation in DNA coding sequences is biologically normal. He concludes

that DNA and RNA deserve a unique status amongst biological causes be-

cause their biologically normal ability to vary in a way that influences the
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structure of gene products is “vastly higher (i.e., many orders of magnitude)

than that of any other causal variables that bear the relation INF to protein

sequences (e.g., splicing agents)” (Weber, 2013, 31).

We are not convinced that it is a meaningful comparison to take, for ex-

ample, the Drosophila DSCAM gene5 with 38,016 splice variants all or most

of which are found in any actual population of flies, and say that alternative

splicing has negligible causal specificity because this number of variants, is

much less than the number of variants possible by mutation of the DSCAM

coding sequence with no limit on the number of mutational steps away from

the actual sequence (Weber, 2013, 19). This seems to be a classic example

of the way in which philosophers are unable to sustain parity of reasoning

(Oyama 2000, 200ff) when thinking about DNA. The principle that only

‘biologically normal’ variation should be counted is rigorously enforced for

non-genetic causes but not for genetic causes. An anonymous reviewer has

pointed out that even when variation in the coding DNA sequence is re-

stricted to a small (and thus ‘biologically normal’) number of mutational

steps, the number of possible variants expands very rapidly because of the

sheer number of nucleotides (about 6000 in DSCAM). Which ranges of varia-

tion in splicing agents and coding sequences it is meaningful to compare will

depend on the biological question being addressed, as we will now discuss.
5In the Drosophila receptor DSCAM (Down Syndrome Cell Adhesion Molecule), 4 of

the 24 exons of the Dscam gene are arranged in large tandem arrays, whose regulation is an

example of mutually exclusive splicing. One block has 2 exons - leading to 1 of 2 alternative

transmembrane segments, the others contain respectively 12, 48 and 33 alternative exons

- leading to 19,008 different ecto-domains. Neuron cells not only differ with respect to

which one of the 38,016 variants (in a genome of about 15,000 genes) it expresses, but in

the exact ratio in which it expresses up to 50 variants at a time. Each block of exons seems

to possess a unique mechanism that ensures that exclusively only one of the alternative

exons is included in the final transcript. For details and references, see Supplementary

Online Materials §3.
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To make a meaningful comparison between splicing agents and coding

sequences it is also necessary to specify a population of entities across which

they produce variation. Waters (2007) focuses on two examples in which

most of the actual variation is caused by variation in DNA. The first is the

population of phenotypic Drosophila mutants in a classical genetics labora-

tory. The second is the population of RNA transcripts at one point in time

in a bacterial cell in which there is no alternative splicing. Obviously, neither

of these cases is a useful one with which to evaluate the causal specificity of

splicing agents, but they do exemplify two important classes of comparisons

we might make. First, we might compare the variation between individuals

in an evolving population and seek to determine if variation in DNA coding

sequences is the sole or main specific difference maker. Second, we might

consider the transcriptome (population of transcripts) in a single cell, either

at a time or across time, and ask whether variation in DNA coding sequences

is the sole or main specific difference maker between these transcripts. We-

ber also considers examples of these two kinds. However, neither Waters nor

Weber considers a third important case, which is the variation between cells

in an organism, both spatial and temporal. This is the kind of variation

that needs to be explained to understand development, the context in which

controversy over the causal roles of genes and other factors most often arises.

Both actual and relevant (‘biologically normal’) variation in genes or

splicing agents will be different in each of these three cases. In the case of

an evolving population mutation is a biologically normal source of variation,

but without any limit on the number of mutational steps from the current

sequence, let alone variation in genome size or ploidy, the values of the DNA

variable would simply be every possible genome, which would be both un-

manageable and biologically meaningless. It might seem natural to exclude

any other sources of variation on the grounds that they are not heritable,

but a number of evolutionary theorists would hotly dispute this (e.g. Bon-
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duriansky, 2012; Jablonka & Lamb, 2005; Uller, 2012). Furthermore, the

machinery of splicing also changes over evolutionary time, so in the evolu-

tionary case the ‘biologically normal’ variation in splicing is greater than the

amount of variation observed in any actual population. These are very com-

plex issues, and we cannot undertake the extensive work of establishing the

relevant ranges of variation of genetic and other variables in the evolutionary

case in this paper.

Instead, we will examine the simpler case suggested by Waters, the pop-

ulation of RNA transcripts in a single cell at one time. But while Waters

considers only cells with no splicing, we will consider cells with splicing, so

as to make a comparison possible. For the transcriptome of a single cell at

a time, the relevant values of the DNA variable are the different sequences

that can be transcribed by the polymerase. If we ignore complexities such

as multiple promoters, we can set this equal to the nominal gene count in

the genome, so that realistic figures are available. The values of the DNA

variable will be weighted by the probability of each gene being expressed.

The values of the splicing variable can be set equal to the number of splicing

variants from each gene, weighted by the probability of each splice variant.

We now propose a quantification of the respective causal specificity of the

DNA and splicing variables for this very simple case. To further simplify the

exposition we assume that the polymerase is always present (an assumption

which can be relaxed easily, see Supplementary Online Materials §2). We

focus on the mutual information measure outlined above, but we need to

take a slightly different approach to compare the specificity of splicing with

the specificity of DNA, for we assume that splicing factors are recruited only

after a given strand of DNA has been transcribed. We do this because, in

reality, it is not the case that any set of splicing factors can be combined

with any gene. If we were to model splicing in this way, then the outcome

of most combinations of genes and sets of splicing factors would be that the
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system fails to produce any biologically meaningful outcome. So it is both

simpler and more biologically realistic to represent the process sequentially,

as the transcription of an mRNA followed by the recruitment of a set of

splicing factors. In other words, the transcription of a given DNA strand

opens a set of possibilities among a proper set of the possible combinations

of splicing factors (figure 11). This entails that the information in splicing

factors, measured by H
(
Ŝ
)
, contains all the information in DNA, measured

by H
(
D̂
)
:6

H
(
D̂, Ŝ

)
= H

(
Ŝ
)

Because the entropy in the DNA variable is conserved in the entropy of the

splicing variable, the mutual information between RNA and splicing will

also conserve the mutual information between RNA and DNA. Thus, we will

need a way to decompose our causal specificity measure into two components,

isolating the separate contributions of DNA and splicing.

As mentioned above, we treat the splicing process as if it were simply

a matter of choosing to include or omit each of a determinate set of exons

in the final transcript. Each value of our splicing variable corresponds to

a set of trans-acting factors sufficient to determine a unique splice-variant

of the RNA. In other words, we consider a bijective relationship between

sets of splicing factors (once recruited) and RNA variants. This bijection en-

tails that the mutual information between RNA and interventions on splicing

I
(
R; Ŝ

)
is simply equal to the so-called self-information of splicing, I

(
Ŝ; Ŝ

)
,

which is itself equal to the entropy of splicing H
(
Ŝ
)
. We can then decom-

pose the entropy of splicing according to well-known chain rules:

I
(
R; Ŝ

)
= I

(
Ŝ; Ŝ

)
= H

(
Ŝ
)
= H

(
D̂, Ŝ

)
= H

(
Ŝ|D̂

)
+H

(
D̂
)

Noting that I
(
R; D̂

)
= H

(
D̂
)
when the polymerase is always present

6In the following equations, D and R are the variables DNA, RNA(see figure 7) and S

is the splicing variable.
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Figure 8: The simplified relationship between DNA (D), splicing

(S) and RNA (R) variables, assumed in the models in Section 5.

Selection of a value for DNA opens a proper set of possibilities of

Splicing . There is a bijective relationship between Splicing and

RNA.

(see Section 5), and that I
(
R; Ŝ

∣∣∣D̂) = H
(
Ŝ
∣∣∣D̂) (see Supplementary On-

line Materials §2), we can rewrite the equation as:

I
(
R; Ŝ

)
= I

(
R; Ŝ

∣∣∣D̂)+ I
(
R; D̂

)
This equation provides a decomposition of the mutual information between

RNA and splicing, I
(
R; Ŝ

)
, into two components, the mutual information

between RNA and DNA, I
(
R; D̂

)
, and the mutual information between

RNA and splicing conditional on DNA, I
(
R; Ŝ

∣∣∣D̂). Because I (R; Ŝ
∣∣∣D̂)≥0,

this entails that I
(
R; Ŝ

)
≥I
(
R; D̂

)
. If we simply proceed as before, taking

mutual information as a measure of causal specificity, we find that the speci-

ficity of splicing is always greater than or equal to the specificity of DNA. As

we mentioned above, however, we need to account for the fact that all the in-

formation contributed by DNA to RNA is conserved in the splicing variable.

Fortunately, we can decompose the mutual information in splicing to obtain
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two terms which represent the contribution from the DNA and the contri-

bution from the splicing process. The term H
(
D̂
)

in the decomposition

of I
(
R; Ŝ

)
represents the amount of information which is preserved in the

splicing process but originates in the DNA. The variation in RNA properly

coming from the splicing process is represented by the term H
(
S
∣∣∣D̂) – a

term that, roughly, reflects the number of splicing variants per DNA strand.

Thus, if one wants to compare the causal specificity of splicing and DNA,

one needs to know which of these two terms, H
(
D̂
)
and H

(
Ŝ
∣∣∣D̂), makes

the greatest contribution to I
(
R; Ŝ

)
.

The answer will crucially depend on the biological system. In drosophila,

an important determinant of neuronal diversity is the single Dscam gene with

38,016 splice variants (see Supplementary Online Materials §3). This gives a

maximum entropy of circa log2 (38016) = 15.2 bits for H
(
Ŝ
∣∣∣D̂), compared

with 0 bits for H
(
D̂
)
. The diversity of this class of transcripts in drosophila

is entirely explained by post-transcriptional processing.7

The homologs of this gene in humans, Dscam and Dscam-like present a

very different picture. The number of splicing variants per gene appear to

be no greater than 3. Assuming that the transcription of each of these two

DNA regions is equiprobable, this gives a maximum entropy of circa 1.6 bits

for H
(
Ŝ
∣∣∣D̂), to be compared with 1 bit for H

(
D̂
)
. DNA and splicing are

roughly equal determinants of diversity in this class of transcripts.

A more meaningful comparison to the Dscam case in drosophila, however,

may be other classes of vertebrate cell-surface proteins. Generalising from

real cases8 we might imagine a class of transcripts that derives from, say 100
7Our decision to use actual figures for genes and isoforms but assume equiprobability

(maximum entropy) for each variable can be justified in this particular case on both the

INF and REL approaches (Section 4). The data required for Waters’ SAD approach are

not available, but there is no reason to suppose it would give qualitatively different results.
8Dscam is homologous between almost all animals, but in vertebrates the two homol-

ogous genes, Dscam and DscamL1, do not encode multiple isoforms. There are however,

several hundred cell adhesion and surface receptor genes in vertebrates: the Ig superfamily,

31



related genes, each of which has 150 splicing variants. Assuming once again

that the transcription of any of these DNA regions is equiprobable, this gives

circa 7.2 bits for H
(
Ŝ
∣∣∣D̂), to be compared with circa 6.6 for H

(
D̂
)
. Both

DNA and splicing variables are important determinants of diversity in this

class of transcripts.

Assigning specificity to the causes of transcript diversity in a single cell

at a time is relatively tractable. The analyses just given could, in principle,

be extended to the entire transcriptome at one stage in the life-cycle of a

well-studied system such as yeast. But this would be of limited interest.

What is at stake in disagreements over the relative causal roles of coding

regions of DNA and other factors in gene expression would be better rep-

resented by comparing the transcriptome in a cell at different times in its

life-cycle, or comparing transcriptomes between different cell-types in an or-

ganism. These comparisons are both ways of thinking about development

– the process by which regulated genome expression produces an organism

and its life-cycle. In comparing the same cell across times, a critical feature

is that which genes are transcribed and how their products are processed de-

pends on transcription and processing at earlier times. For the population of

cells in an organism somatic mutations that could arise during development

become relevant, leading to the need to say something about the number of

mutational steps that counts as a ‘biologically realistic’ intervention on this

variable. We hope to confront these complexities in future work.

as well as integrins, cadherins, and selectins. This genetic diversity is combined with com-

plex regulatory patterns, albeit not on the scale of the Dscam expression in Drosophila.

The three neurexin genes display extensive alternative splicing, a process that can po-

tentially generate thousands of neurexin isoforms alone. For details and references, see

Supplementary Online Materials §3.
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6 Conclusion

Causal specificity is the label given to an intuitive distinction amongst the

many conditions that are necessary to produce an effect. The specific causes

are those variables that can be used for fine-grained control of an effect

variable. It has been suggested that a specific relationship between two

variables is one that resembles a bijective mapping between the values of the

two variables (Woodward, 2010). The concept of causal specificity can be

clarified considerably by going a step further and attempting to measure it.

Our quantitative measure of specificity starts from the simple idea that

the more specific the relationship between a cause variable and an effect vari-

able, the more information we will have about the effect after we perform

an intervention on the cause. Section 2 used information theoretic measures

to express this idea. We found that if the conditional entropy of the effect

on interventions on the cause H
(
E
∣∣∣Ĉ ) = 0 then manipulating C provides

complete control over E. We argued, however, that the idea of sensitive

manipulation, or fine-grained influence (Woodward, 2010) would be better

represented by measuring the entropy of the effect H (E) and the mutual

information between cause and effect I
(
E; Ĉ

)
. Fine-grained influence re-

quires both that the repertoire of effects is large and that the state of the

cause contains a great deal of information about the state of the effect. In

the ideal case, H (E) would tend toward infinity and I
(
E; Ĉ

)
would tend

toward H (E).

Section 3 examined the behavior of I
(
E; Ĉ

)
as a measure of causal

specificity (SPEC). The behavior of the measure depends on the probability

distributions over the states of the variables, as well as the structure of the

causal graph. Other things being equal, a variable with many states that

are rarely or never occupied is a less specific cause than one equally likely

to be in any of its states, that is, one with higher entropy. Section 4 showed

that this feature is a strength of our proposed measure. It is in line with the
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qualitative reasoning of Waters (2007), who argues that the property which

justifies singling out one cause as more significant that another can be its

specificity with respect to the actual variation seen in some population and

of Weber (2013) who suggests that we focus on the somewhat wider class of

‘biologically normal’ variation.

The sensitivity of our measure to the underlying probability distribu-

tions contrasts with presentations of causal specificity where it is assumed

that the value can be inferred from the structure of a causal graph. Our at-

tempt to quantify specificity forces this assumption to become explicit. The

least arbitrary way to represent this assumption in our models would seem

to be to make all values of the causal variables equiprobable. Making this

assumption is probably not appropriate for settling the disputes about the

relative significance of various causal factors in biology with which Waters

and Weber are concerned. However, in the broader context of the interven-

tionist account of causation it may be entirely appropriate, because causal

variables are the sites of voluntary intervention by an idealized agent.

Section 5 used our measure to assess the relative specificity of different

causes that contribute to the same effect. The idea of specificity has been

used to argue that DNA sequences are the most significant causes, because

of their supposedly unrivalled degree of specificity. Our discussion revealed

that this is completely premature. First, it is necessary to specify the causal

process in question. The causes of individual differences in an evolving pop-

ulation are quite different from the causes of transcript diversity in a single

cell, and different again from the causes of spatial and temporal diversity

amongst the cells of a single organism. We constructed a simple model with

which we were able to quantify the specificity of a DNA coding sequence

and of splicing factors with respect to transcript diversity in a single cell at

a time. We showed that the relative specificity of these two variables can be

very different for different classes of transcripts. The idea that that DNA
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obviously has an unrivalled degree of specificity seems to arise because ear-

lier, qualitative discussions implicitly compared the actual variation in the

splicing variable within cells to the possible variation in the DNA variable

on an evolutionary timescale.

While it seems plausible to us that the specificity of coding DNA as a

cause of evolutionary change is very high, we pointed out that proper explo-

ration of this would require serious thought about which range of variation in

the DNA variable can be meaningfully compared with which range of varia-

tion in other cellular mechanisms. Similar work would be needed before our

measure can be applied to what is arguably the most pressing case, namely

the relative specificity of different causes in development. We hope to focus

on this case in future work.

We believe that the work reported here amply demonstrates the philo-

sophical payoff of developing quantitative measures of causal specificity.

However, a great deal remains to be done. First, although our measures

provides information about causal specificity rather than the presence of

causation per se, in future work we hope to provide an information theoretic

statement of the interventionist criterion of causation. Second, our measure

of specificity is only one of several information theoretic measures that can

be used to characterize causal relationships. In future work we hope to ex-

plore the potential of these other measures for the philosophy of causation.

Thirdly, and perhaps most urgently, we gave only minimal attention in this

paper (in Section 4) to the ways in which the relationship between two vari-

ables can be affected by additional variables. In a forthcoming paper we

extend our framework to deal with these interactions.

Supplementary Online Materials can be downloaded from http:

//philsci-archive.pitt.edu/0123456789
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8 Supplementary Online Materials (Online Materi-

als to be posted at http://philsci-archive.pitt.

edu)

8.1 The effect of transcription probability

Here we derive the equations of the curves in Figure 7 (reproduced below

as Figure 10) describing the effect of transcription probability on several

informational measures on RNA, DNA and transcription. For the ease of

presentation, we will ignore splicing.

To ease reading, we will write the variables RNA as R (with values ri),

transcription as T (with values th), and DNA as D (with values dj). Again,

hats on variables mean that their values are fixed by a surgical intervention.

8.1.1 The mutual information between RNA and transcription

We suppose that if there is no transcription (h = 0), there is no RNA

strand produced (i = 0), while if there is transcription (h = 1), there is one

RNA strand produced among n possible variants (i = 1 . . . n). This implies

that once a given value for RNA is obtained (either i = 0, i.e. absence,

or i = 1 . . . n) we also know whether transcription was on or off. In other

words, the joint probability for RNA and transcription is given as follows

(see Figure 9):

p(ri, t̂h) =


p(r0), if h = 0 and i = 0.

p(ri), for h = 1 and i = 1, 2, . . . , n.

0, otherwise.

(1)

Also, by computing the marginal probability of transcription, p(t̂h) =∑n
i=0 p(ri, t̂h), we can obtain that p(t̂0) = p(r0, t̂0) and p(t̂1) =

∑n
i=1 p(ri, t̂1).

Therefore,

p(t̂0) = p(r0) and p(t̂1) =
n∑

i=1

p(ri) (2)
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Figure 9: Diagram showing events with non-null probabilities in

our model of transcription, when splicing is ignored. Transcription

can be either on (h = 1), in which case a DNA strand j will deter-

ministically lead to a RNA strand j, or off (h = 0), in which case

any DNA strand will lead to a null RNA. (Probabilities assigned to

events are for illustratory purpose only, but notice that p(t0) and

p(t1) sum to 1.)
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Figure 10: Effects of changing probability of transcription on sev-

eral informational measures: the entropy of RNA (the effect), the

mutual information between RNA and DNA, and the mutual infor-

mation between RNA and the presence of polymerase.

Now, using (1) and (2), we can compute the mutual information between

RNA and transcription.

I
(
R; T̂

)
=

1∑
h=0

n∑
i=0

p
(
ri, t̂h

)
log

p
(
ri, t̂h

)
p (ri) p

(
t̂h
) (3)

= p
(
r0,t̂0

)
log

p
(
r0,t̂0

)
p (r0) p

(
t̂0
) + n∑

i=1

p
(
ri, t̂1

)
log

p
(
ri, t̂1

)
p (ri) p

(
t̂1
) (4)

= p (r0) log
p (r0)

p (r0) p
(
t̂0
) + n∑

i=1

p (ri) log
p (ri)

p (ri) p
(
t̂1
) (5)

= p (r0) log
1

p
(
t̂0
) + n∑

i=1

p (ri) log
1

p
(
t̂1
) (6)

= p (r0) log
1

p
(
t̂0
) +( n∑

i=1

p (ri)

)
log

1

p
(
t̂1
) (7)

= p
(
t̂0
)
log

1

p
(
t̂0
) + p

(
t̂1
)
log

1

p
(
t̂1
) (8)

= H
(
T̂
)

(9)

That I
(
R; T̂

)
= H

(
T̂
)
simply reflects that there is a bijection between

having transcription set to on (respectively off ) and obtaining some non-null
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(respectively null) RNA. In other words, none of the values for transcription

lead to convergent results: there is no loss of information about transcription

when it occurs (or not).

8.1.2 The mutual information between RNA and DNA

We suppose that if there is transcription (h = 1), a given strand of DNA

(j = 1...n) will deterministically lead to a given strand of RNA (i = 1. . .n).

If there is no transcription (h = 0), any strand of DNA will lead to no RNA

(i = 0) (see Figure 11). In other terms, there is a bijection between DNA

and RNA if and only if transcription is on, otherwise all values of DNA lead

to the same null result. We also suppose that state of the polymerase and

the choice of a DNA strand to transcribe are independent events.

We begin with:

I
(
R; D̂

)
=

n∑
i=0

n∑
j=1

p
(
ri, d̂j

)
log

p
(
ri, d̂j

)
p (ri) p

(
d̂j

) (10)

We will consider now how this measure behaves when we take into ac-

count the probability of transcription.

To simplify writing, we will first notice that many joint events have null

probabilities, which makes them cancel out in the calculus of mutual infor-

mation. These joint events are (ri>0, dj 6=i) : it is impossible to get another

strand of RNA than the one the DNA strand codes for (whatever the tran-

scription state, see Figure 9).

Thus, without loss of generality, we can write, splitting the cases with

non-null (i > 0) and null (i = 0) RNA:

I
(
R; D̂

)
=

n∑
i=1

p
(
ri, d̂i

)
log

p
(
ri, d̂i

)
p (ri) p

(
d̂i

) +

n∑
j=1

p
(
r0,d̂j

)
log

p
(
r0,d̂j

)
p (r0) p

(
d̂j

)
(11)

Using the diagram in Figure 9, we can easily see the following relation-
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ships:

(a) p(d̂i|ri) = 1, if i > 0.

(b) p(d̂j |r0) = p(d̂j), for j = 1, . . . n.

(c) p(ri|d̂i) = p(t̂1), if i > 0.

Using these relationships, we can simplify I(R; D̂) as follows:

I
(
R; D̂

)
=

n∑
i=1

p
(
ri, d̂i

)
log

p
(
ri, d̂i

)
p (ri) p

(
d̂i

)
+

n∑
j=1

p
(
r0,d̂j

)
log

p
(
r0,d̂j

)
p (r0) p

(
d̂j

) (12)

=
n∑

i=1

p
(
ri, d̂i

)
log

p
(
d̂i|ri

)
p
(
d̂i

)
+

n∑
j=1

p
(
r0,d̂j

)
log

p
(
d̂j |r0

)
p
(
d̂j

) (13)

Due to relationships (a) and (b),

I
(
R; D̂

)
=

n∑
i=1

p
(
ri, d̂i

)
log

1

p
(
d̂i

) +
n∑

j=1

p
(
r0,d̂j

)
log

p
(
d̂j

)
p
(
d̂j

) (14)

=

n∑
i=1

p
(
ri, d̂i

)
log

1

p
(
d̂i

) (15)

=
n∑

i=1

p
(
ri|d̂i

)
p
(
d̂i

)
log

1

p
(
d̂i

) (16)

Due to relationship (c),

I
(
R; D̂

)
=

n∑
i=1

p(t̂1)p
(
d̂i

)
log

1

p
(
d̂i

) (17)

= p(t̂1)H(D̂) (18)

This equation reflects the fact that the informativity of DNA is condi-

tional upon the presence of transcription. If transcription were always on,
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there would be a bijection between DNA and RNA. However, when the tran-

scription is sometimes off, there is a loss of information between DNA and

the RNA outputs, as several strands of DNA can lead to the same result (no

RNA) when there is no transcription. The information loss is simply this

part of DNA entropy which is not present in the mutual information between

DNA and RNA, that is, H
(
D̂ |R

)
:

H
(
D̂ |R

)
= H

(
D̂
)
− I

(
R; D̂

)
(19)

=
(
1− p

(
t̂1
))

H
(
D̂
)

(20)

8.1.3 The entropy of RNA

Here we derive the entropy of RNA in terms of mutual information between

RNA and DNA and the entropy of transcription. We again split between the

cases where there is transcription (t̂1) or none (t̂0). We again use the fact

that and that p (ri) = p
(
d̂i

)
p
(
t̂i
)
. We also remark that

∑n
i=1 p

(
d̂i

)
p
(
t̂1
)

sums to p
(
t̂1
)
.

H (R) = −
n∑

i=0

p (ri) log p (ri) (21)

= −
n∑

i=1

p
(
d̂j

)
p
(
t̂1
)
log p

(
d̂j

)
p
(
t̂1
)
− p (r0) log p (r0) (22)

= −p (t1)

(
n∑

i=1

p
(
d̂j

)
log p

(
d̂j

)
+

n∑
i=1

p
(
d̂j

)
log p

(
t̂1
))

−p (r0) log p (r0) (23)

= −p (t1)
n∑

i=1

p
(
d̂j

)
log p

(
d̂j

)
− p

(
t̂1
)
log p

(
t̂1
)

−p
(
t̂0
)
log p

(
t̂0
)

(24)

We recognize:

H (R) = p
(
t̂1
)
H
(
D̂
)
+H

(
T̂
)

(25)

= I
(
R; D̂

)
+ I

(
R; T̂

)
(26)
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8.2 The mutual information between RNA and splicing

8.2.1 When transcription is always on

Here we derive the equations for the mutual information between RNA and

splicing.

For the sake of simplicity, we shall first ignore transcription probability

and assume that p
(
t̂1
)
= 1. This amounts to relaxing the conditionalisation

upon transcription.

In the model considered here the splicing factor variants are recruited

only once a given strand of DNA has been transcribed. In addition, we sup-

pose that the transcription of a given DNA strand opens a set of possibilities

among a proper set of splicing factors (see Figure 11). This entails that the

information in splicing H
(
Ŝ
)
contains all the information in DNA, H

(
D̂
)
:

H
(
D̂, Ŝ

)
= H

(
Ŝ
)

(27)

In addition, we consider a bijective relationship between splicing factors

and RNA variants. This bijection entails that the mutual information be-

tween RNA and splicing is equal to the self-information of splicing (that is,

the entropy of splicing). We can then decompose the entropy of splicing

according to well known chain rules:

I
(
R; Ŝ

)
= I

(
Ŝ; Ŝ

)
(28)

= H
(
Ŝ
)

(29)

= H
(
D̂, Ŝ

)
(30)

= H
(
Ŝ
∣∣∣D̂)+H

(
D̂
)

(31)

From equation (18), we know that H
(
D̂
)

= I
(
R; D̂

)
, assuming that

transcription always occurs. In addition, the bijection between splicing and

RNA (including the null value) entails that the conditional entropy of splicing

(conditioned on DNA) is the conditional mutual information of splicing and
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Figure 11: Diagram of our model of splicing, when transcription

is assumed to be on. A DNA strand deterministically leads to a

proper set of splicing factor variants, each of them deterministically

leading to a proper RNA strand.

RNA: H
(
Ŝ
∣∣∣D̂) = I

(
R; Ŝ

∣∣∣D̂) (as an immediate calculation would show).

We thus can rewrite equation (31) as:

I
(
R; Ŝ

)
= I

(
R; Ŝ

∣∣∣D̂)+ I
(
R; D̂

)
(32)

Readers familiar with information theory will recognize the decomposi-

tion of the mutual information I
(
R; Ŝ, D̂

)
which happens to be, in this

particular example, equal to I
(
R; Ŝ

)
. That is, knowing the value of DNA

does not bring us any information as regards RNA in addition to knowing

the value of splicing. Notice equation (32) also provides a decomposition of

the entropy of splicing, that is, H(S) = I
(
R; Ŝ

)
in virtue of the bijection

between RNA and splicing.

8.2.2 When transcription can be either on or off

For the sake of completeness, we now give equation (32) in a version taking

into account the probability of transcription. The reasoning is grounded on

45



the hypothesis that a given splicing factor occurs only when there is tran-

scription and a given DNA strand has been choosen. Then, decomposition

of I(R; Ŝ) gives:

I
(
R; Ŝ

)
= I

(
Ŝ; Ŝ

)
(33)

= H
(
Ŝ
)

(34)

= H
(
Ŝ
∣∣∣D̂, T̂

)
+ I

(
Ŝ; D̂, T̂

)
(35)

= H
(
Ŝ
∣∣∣D̂, T̂

)
+ I

(
Ŝ; D̂

∣∣∣T̂ )+ I
(
Ŝ; T̂

)
(36)

Again, we take advantage of the bijection between splicing and RNA,

to replace H
(
Ŝ
∣∣∣D̂, T̂

)
= I

(
R; Ŝ

∣∣∣D̂, T̂
)
. We also take advantage of the

fact that there is no interaction information between DNA, RNA, and tran-

scription, that is, I
(
R; D̂

∣∣∣T̂ ) = I
(
R; D̂

)
. This can be shown with the

calculation sketched below. We again use relationship (1) to simplify, hence

if i > 0 we have p(ri, dj , t1) = p(ri, dj) and p(ri, t1) = p(ri). A similar re-

placement method would hold for i = 0, but we directly simplify this term

as it is null.

I
(
R; D̂

∣∣∣T̂ ) =
1∑

h=0

p(t̂h)
n∑

j=0

m∑
i=1

p
(
ri, d̂j

∣∣t̂h) log p
(
ri, d̂j

∣∣t̂h)
p
(
ri
∣∣t̂h ) p(d̂j ∣∣t̂h)(37)

= p(t̂0)
n∑

j=0

p
(
r0, d̂j

∣∣t̂0) log p
(
r0, d̂j

∣∣t̂0)
p
(
r0
∣∣t̂0 ) p(d̂j ∣∣t̂0) (38)

+p(t̂1)
n∑

j=0

m∑
i=1

p
(
ri, d̂j

∣∣t̂1) log p
(
ri, d̂j

∣∣t̂1)
p
(
ri
∣∣t̂1 ) p(d̂j ∣∣t̂1) (39)

= 0 +

n∑
j=0

m∑
i=1

p
(
ri, d̂j , t̂1

)
log

p
(
ri, d̂j , t̂1

)
p(t̂1)p

(
ri
∣∣t̂1 ) p(d̂j) (40)

=

n∑
j=0

m∑
i=1

p
(
ri, d̂j

)
log

p
(
ri, d̂j

)
p (ri) p

(
d̂j

) (41)

= I
(
R; D̂

)
(42)
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Injecting these terms in equation (36), we obtain:

I
(
R; Ŝ

)
= H

(
Ŝ
∣∣∣D̂, T̂

)
+ I

(
Ŝ; D̂

)
+ I

(
Ŝ; T̂

)
(43)

= H
(
Ŝ
∣∣∣D̂, T̂

)
+ p

(
t̂1
)
H
(
D̂
)
+H

(
T̂
)

(44)

Again, noticing that H
(
Ŝ
∣∣∣D̂, T̂

)
= I

(
R; Ŝ

∣∣∣D̂, T̂
)
, we retrieve an equa-

tion similar to equation (32):

I
(
R; Ŝ

)
= I

(
R; Ŝ

∣∣∣D̂, T̂
)
+ I

(
R; D̂

)
+ I

(
R; T̂

)
(45)

Readers familiar with information theory will recognize the decomposi-

tion of the mutual information I
(
R; Ŝ, D̂, T̂

)
which happens to be, in this

particular example, equal to I
(
R; Ŝ

)
. That is, knowing the value of DNA

and transcription does not bring us any more information as regards RNA

than just knowing the value of splicing. Notice that similarly to equation (32)

in the case where transcription is always on, equation (45) provides a decom-

position of the entropy of splicing, that is, H(S) = I
(
R; Ŝ

)
in virtue of the

bijection between RNA and splicing.

To wrap up, in this model transcription adds variation in the set of

splicing factor variants (the absence of any factor now belongs to the set of

possibilities), which is independent from DNA.

8.3 Alternative splicing in Drosophila Dscam

The Drosophila receptor DSCAM (Down Syndrome Cell Adhesion Molecule),

a member of the immunoglobulin (Ig) superfamily, is a remarkable exam-

ple of homophilic binding specificity that functions in important biological

processes, such as innate immunity and neural wiring. In insects and also

crustaceans (e.g. Daphnia) 4 of the 24 exons of the Dscam gene are ar-

ranged in large tandem arrays, whose regulation is an example of mutually

exclusive splicing. In Drosophila one block has 2 exons - leading to 1 of 2

alternative transmembrane segments, the others contain respectively 12, 48
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and 33 alternative exons - leading to 19,008 different ecto-domains. Together

they produce, 38,016 alternative protein isoforms, within a genome of 15,016

protein-coding genes [1]. There are several interesting aspects about this

case:

1. For each block of exons there seem to exist a unique mechanism that

ensures that exclusively only one of the alternative axons is included

in the final transcript. Only two of the mechanisms are known in some

detail. Researchers have identified specific cis-acting sequences and

trans-acting splicing factors that tightly regulate splicing of exon 4.2,

but for most others the details are again not yet known [4, 3].

2. It is not only the large number of alternative transcripts that allow

for high diversity of functions, but in addition most alternative exons

are expressed in neurons and found in many combinations. Neurons

express up 50 variants at a time, which makes for an even larger combi-

natorial spectrum of neuron differentiation. This ensures that branches

from different neurons will share, at most, a few isoforms in common.

This diversity of function enables branches of neurons to distinguish

between sister branches and branches of other neurons, and also for

patterning of neural circuits [8].

3. There seem to be distinct ways of regulating isoforms in the two differ-

ent functions. For self-recognition purposes, neurons seem to express

DSCAM isoforms in a stochastic yet biased fashion. Which isoform is

expressed in a single neuron is unimportant as long as it sufficiently dif-

ferent from its neighbour. It might simply be an indirect consequence

of the expression of different splicing factors in different neurons that

leads to this bias. For appropriate branching patterns, however, the

research to date suggests that the expression of Dscam isoforms in

some neurons is under tight developmental control. So we find a con-
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trolled mix of stochasticity and regulation in the expression of Dscam

in drosophila [9].

4. Dscam is homologous between almost all animals, which places its ori-

gin to over 600 million years ago before the split between the deuteros-

tomes and protostomes [2]. But while in vertebrates their two homol-

ogous genes, Dscam and DscamL1 do not encode multiple isoforms, in

arthropods the single gene is highly enriched with alternative exons.

That leads to the interesting hypothesis that while in simple animals

cell adhesion and cell recognition is controlled by complex genes, in

complex animals this is done by relatively simple genes. This raises

the question of how to address the difficulty of accounting for a molec-

ular diversity large enough to provide specificity for the extraordinary

large number of neurons in the more complex vertebrate brains [5].

Vertebrates seem to manage their increase in cell recognition specifici-

ties through the combinatorial association of different recognition systems

such as gene duplication and the successive divergence of other loci, and via

the graded expression of recognition proteins [9]. There exists a large range

of cell adhesion, recognition and surface receptor genes in vertebrates: the

calcium-independent Ig superfamily, and calcium-dependent integrins, cad-

herins, and selectins. The human immunoglobulins (Ig) are the products

of three unlinked sets of genes: the immunoglobulin heavy (IGH), the im-

munoglobulin (IGK), and the immunoglobulin (IGL) genes, with a total of

about 150 functional genes. A large number of cadherin superfamily genes

have been identified to date, and most of them seem to be expressed in the

CNS. At least 80 members of the cadherin superfamily have been shown to

be expressed within a single mammalian species. Integrins have two different

chains, the (alpha) and (beta) subunits of which mammals possess eighteen

and eight subunits, while Drosophila has five and two subunits.
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This genetic diversity is combined with complex regulatory patterns. One

example are the neurexin and neuroligin proteins in humans which are all

encoded by multiple genes. Neurexin is encoded by three genes controlled

each by two promoters which produce 6 main forms of neurexin. Both genes

display relative extensive alternative splicing, a process that can potentially

generate thousands of neurexin isoforms alone [2, 6]. Splice form diversity is

most extensive in the mammalian brain [7].
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