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Cellular behavior is sustained by genetic programs that are pro-
gressively disrupted in pathological conditions—notably, cancer.
High-throughput gene expression profiling has been used to infer
statistical models describing these cellular programs, and develop-
ment is now needed to guide orientated modulation of these
systems. Here we develop a regression-based model to reverse-
engineer a temporal genetic program, based on relevant patterns
of gene expression after cell stimulation. This method integrates
the temporal dimension of biological rewiring of genetic programs
and enables the prediction of the effect of targeted gene disrup-
tion at the system level. We tested the performance accuracy of
this model on synthetic data before reverse-engineering the re-
sponse of primary cancer cells to a proliferative (protumorigenic)
stimulation in a multistate leukemia biological model (i.e., chronic
lymphocytic leukemia). To validate the ability of our method to
predict the effects of gene modulation on the global program, we
performed an intervention experiment on a targeted gene. Com-
parison of the predicted and observed gene expression changes
demonstrates the possibility of predicting the effects of a pertur-
bation in a gene regulatory network, a first step toward an orien-
tated intervention in a cancer cell genetic program.

temporal gene network | lasso penalty | lymphoproliferative disorder |
B-cell antigen receptor | predicted intervention

Cellular behavior is conditioned mostly by functional genetic
programs in response to various environmental signals, as

initially shown in simple organisms (1, 2). External stimuli acti-
vate cellular surface receptors that trigger multiple signaling
cascades in cells. The ultimate targets of these cascades are tran-
scription factors that initiate sequential transcriptional activations
with high temporal coordination. The first activated genes, at early
time-points, after cell stimulation, essentially have a fast and
transient expression; their gene products activate expression of
various target genes downstream of transcriptional regulation
cascades. These latter genes have longer-lasting expression, and
their products sustain the adapted cellular response to initial
environmental stimulation (3). These functional molecular net-
works are disrupted in various pathologies (e.g., cancer) where
genetic aberrations lead to tumoral cellular programs. Since the
first application of high-throughput technologies for measuring
gene expression, a number of methods have been proposed to
reverse-engineer gene regulatory networks; considered to be the
underlying structure of these genetic programs (4). These dif-
ferent methods were developed to infer gene potential inter-
actions and to describe these networks at the system level (5).
The next important goal was to develop statistical tools to

control these systems (6). One of the key challenges is to de-
termine which critical genes whose perturbed expression drive these
pathological genetic programs toward targeted states. We
propose here a predictive method that is able to predict changes
in gene expression upon intervention in the network. Predicting
the resulting dynamic gene expression after specific targeted gene
disruption is a first step toward controllability.
Among statistical approaches developed to reverse-engineer

statistical links between genes and to infer underlying gene regu-
latory programs (7) there is as yet no standard method, because
each one is based on strong and specific modeling assumptions,
indispensable to make the model identifiable (8). As we aimed to
understand the temporal dynamic of the network, we focused on
methods suited for time-series gene expression data. These meth-
ods can be grouped into three categories: (i) information theoretic
models, which define a proximity measure between genes, (ii) op-
timizationmethods, which use a scoring function to choose the best
suited network, and (iii) regression and other systems of equation
methods with a prior network structure. Information theoretic
models can only be used for descriptive purposes (i.e., no pre-
diction is possible) but are computationally efficient, making
them appealing for large data sets. Several proximity criteria may
be used, e.g., the partial Pearson correlation coefficient in graphi-
cal Gaussian models (9) or entropy in the time-delay ARACNE
(TD-ARACNE) method (10). Optimization methods comprise
mostly algorithms using discretized gene expression data and are
not computationally efficient for large data sets. Equations-based
models impose an underlying structure on the gene network
(11). These last methods were retained in this study because they
have led to promising results due to their flexibility (allowing
structural prior information to be incorporated in the model),
their ability to infer large-scale networks, and their suitability for
prediction purposes (7).
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To develop and test such statistical models, we previously
developed a pertinent biological model using human blood
cancer cells (12). This biological model allowed us to focus on a
genetic program that sustains the leukemic process after a cel-
lular stimulation in primary malignant lymphocytes (13, 14).
Furthermore, this model includes various cell states, from healthy
(normal) lymphocytes to those implicated in indolent and ag-
gressive chronic lymphocytic leukemia (CLL), allowing us to
compare the genetic program of these different cell states, which
leads in turn to specific proteomic phenotypes (15). CLL is de-
fined by a clonal proliferation of B-lymphocytes, which accu-
mulate in the blood to form a leukemia that progressively evolves
and is currently incurable (16). The mechanism of this prolif-
eration is not well understood, but current hypotheses are in
favor of a chronic antigenic stimulation of certain lymphocytes as
the primary event in tumorigenesis. Indeed, stimulation through
the B-cell antigen receptor (BCR) is crucial for physiological
development and is the basis of immunological response of these
cells. However, in CLL (as in other leukemias and lymphomas)
a sustained and chronic stimulation of unknown origin is thought
to chronically stimulate some lymphocytes, progressively leading
to a cell transformation and finally—with accumulation of ge-
netic abnormalities—to an autonomous leukemic cell expansion
program (13, 16). Several prognostic subgroups of CLL have
been described, encompassing patients with different survival
times (17). Gene expression profiles have been assessed in these
different leukemic states (12, 18, 19), but no comprehensive
lymphocyte BCR genetic program has been proposed to date.
Inferring a statistical model of the BCR gene program to predict
the key genes that need to be ultimately silenced to modulate the
leukemic genetic program in an oriented way would enable better
drug development in this presently incurable disease. Further-
more, such an approach would be transferable to other cancers
and nonmalignant complex diseases.
In this study we selected genes using a two-step algorithm,

which retains genes with high differential expression and genes
with specific temporal patterns. We then reverse-engineered the
gene regulatory network with a penalized regression-based method.
To assess the possibility of controlling such a genetic program,
we performed an RNAi knockdown experiment on a targeted
gene, predicting the changes in gene expression from wild-type to
the knockdown cells.

Results
Gene Selection and Network Reverse-Engineering. After cell stim-
ulation, a specific genetic program is initiated by the concerted
expression of a limited number of genes. When captured through
temporal genome-wide transcriptional data, the expression of
these genes of interest needs to be separated from the residual
cellular transcription. So, at each time point after stimulation, we
studied gene expression both in stimulated cells and in control
(unstimulated) cells. Given that several temporal gene expres-
sion profiles have revealed complex gene expression after cel-
lular stimulation (3, 20), we considered that genes with both high
expression level and those with a specific expression pattern
(regardless of their expression level) are relevant in the program
(21). Gene selection methods based upon selection of highly
differentially expressed genes are widely used. In this study,
highly expressed genes are selected using common statistical
methods (22), and genes with specific temporal expression pat-
terns are selected with a specific mixture model, which is also used
to group genes into time clusters.
After selecting genes that are likely to participate in the ge-

netic program, we specified a regression-based model to reverse-
engineer the gene network. To make the model identifiable and
interpretable, some biological constraints were assumed. First,
we use the time clusters induced by the mixture model to ensure
the temporal causality (i.e., if gene n1 is in the time cluster c1

and gene n2 is in the time cluster c2, gene n1 may interact with
gene n2 if and only if c2 > c1). More importantly, topological
changes have been observed in gene regulatory networks across
time (2, 23). This property implies a variance in the links between
genes through time, allowing specific links activation at specific
periods of time after cell stimulation. There are only a few methods
allowing such a temporal rewiring. Assuming the widespread hy-
pothesis of sparsity of large networks (4), we put a Lasso penalty on
the model (24). As a result, we propose a scalable time rewiring
reverse-engineering method, well-suited for large data sets (Mate-
rials and Methods).

Application to Synthetic Data. To test our model for inference
purposes and determine how accurate the inferred network is,
compared with the real network, we used synthetic simulated
data where the true network is perfectly known. We compared
two network topologies for our simulations: W1, which has a
scale-free topology, generated with the RANGE algorithm (25);
and W2, which has a temporal cascade topology closer to a bio-
logical model of transcriptional activation after transient cell
stimulation (3, 26). These networks are composed of 500 and
300 genes, respectively, both with four time-points (the number
of genes and time points was chosen with the perspective of
studying our biological data set). The gene expression was sim-
ulated using a nonlinear logistic function (27). We then calcu-
lated three usual indicators (10, 28): sensitivity, which describes
the proportion of detected links among those that are in the real
network; predicted positive value (PPV), which describes the
proportion of inferred links that are in the real network; and the
F-score (29), which combines both and therefore is a convenient
way to assess the global performance of an inference method.
With the stable state synthetic network generated with RANGE
algorithm, our method achieves an F-score = 0.011 (P = 0.001),
which considerably increases with a temporal cascade network
reaching an F-score = 0.159 (P < 0.001). To go further in this
evaluation with synthetic data, we sought to compare these per-
formances with those of actual benchmarked algorithms encom-
passing several mathematical approaches: TD-ARACNE, an in-
formation theoretic method (10); GeneNet, a graphical Gaussian
method (9); GeneReg, a regression-based method (30); and a dy-
namic Bayesian network method (DBN) by Morrissey et al. (31)
(settings and short descriptions of these methods are presented in
Tables S1 and S2). Despite the performances of the DBN method
(31), its low computational efficiency did not allow us to reach any
results with such synthetic data size. GeneReg (30) did not give
any significant result for either of the performance indicators.
All three remaining methods (TD-ARACNE, GenNet, and our
method) performed equally on the RANGE network, with an
F-score of 0.01 ± 0.001. One notes that a slight change in F-score
(e.g., from 0.011 for our method network to 0.009 for GeneNet)
induces an important change in terms of P value (0.001–0.032,
respectively), which seems to reveal how difficult it is to reverse-
engineer a 500-nodes network. When using a cascade topology
network, performances of all methods (TD-ARACNE, GenNet,
and our method) increased. Nevertheless, in this case, our method
has much better results with an F-score = 0.16, whereas other
methods have an F-score less than 0.044. The two proposed net-
work topologies are reliable, and the true targeted network may be
halfway between the two. Because our method outperforms the
others in both networks, our proposed algorithm appears to be
effective in all cases. Detailed results of algorithms comparisons
are presented in Table 1.

Application to the CLL Data Set. We used gene expression data
generated and previously reported (12). Briefly, three different
cell populations (six healthy B-lymphocytes, six leukemic CLL
B-lymphocyte of indolent form, and five leukemic CLL B-lympho-
cyte of aggressive form) were stimulated in vitro with an anti-IgM
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antibody, activating the BCR. We analyzed the gene expression
at four time-points (two early time-points at 60 and 90 min, one
intermediary time-point at 210 min, and one late time-point at
390 min). For each time point, gene expression measurement
was performed both in stimulated cells and in control unstimu-
lated cells, and data were then preprocessed using dChip soft-
ware (32). The gene selection process retained genes that were
highly differentially expressed (∼40%) and genes with specific
temporal patterns (∼60%). Among the 54,675 probe sets, 960
were retained for further analysis. Approximately 500 genes are
retained by cell category; the distribution of these genes within
the three cell groups is shown in a Venn diagram in Fig. S1. A
core of 183 genes is used by all cell groups. Among these, 118
correspond to unique genes. The exploration of their biological
function through the National Institutes of Health’s DAVID
database (33) allows evaluation of the significance of biological
function enrichment of this list of genes. The majority of these
genes are indeed known to be expressed in response to cellular
stimulation (51 of 118 genes, P value with false discovery rate
correction = 0.0001) and specifically in the gene expression

regulation after cell stimulation (44/118, P = 0.0006). Further-
more, the genes shared by the three cell categories are enriched
with genes having a transcriptional activity (22/118, P = 0.0003)
or a transcriptional regulation activity (26/118, P = 0.0017). As
expected, some of these genes are also involved in the BCR
signaling regulation through MAP kinase phosphatases (3/118,
P = 0.05). Some genes are known to be involved in the biological
process of immune regulation (20/118, P = 0.0045), and more
specifically in lymphocyte activation (8/118, P = 0.0016). These
genes, which are the basis of the response to BCR stimulation
within the three cell groups, have labels that are distributed
across the four temporal cluster types. Other genes are either
shared by two cell groups or are specific to a cell population. More
genes (183 + 86) are shared by the aggressive or indolent leukemic
cells than by the healthy cells and the leukemic cells. The differ-
ential expression levels of the retained genes as a function of time
is shown for a representative patient in Fig. 1.
The genetic program induced within each cell group is then

inferred with a Lasso regression-based method and is represented
by a predictive linear model, adjusted independently on each of
the three cell groups (Materials and Methods). Within the model,
the expression of one particular gene at a given time-point influ-
ences the expression of other genes at subsequent time-points,
satisfying the temporal constraint of the gene program. This
model defined a network of the probable genetic interactions
involved in cell response to antigen stimulation. The inferred net-
work in the three cell categories is shown in Fig. 2. These models
show a scale-free–like structure, where a large fraction (93% in
the most aggressive leukemic B cells) of genes have a small number
of outgoing edges (less than 10) and a small fraction of genes, the
so-called hub genes (1%: seven genes), have a large number of
outgoing edges (more than 40). There are two hubs in healthy cells,
four in indolent leukemic cells, and seven in aggressive leukemic
cells. Among these 10 hub genes, four are known genes with tran-
scription factor activity (EGR1,EGR3, JUNB, andNR4A1), involved
in transcriptional activation of the JNK MAP kinase signaling
and ERK signaling pathways, downstream of the BCR. Some of
these genes are also directly involved in MAP kinase signaling
(DUSP1 and DUSP2) and in lymphocyte function regulation
(CD83). Interestingly, EGR1, which is common to all three cell

Table 1. Modeling performances comparisons on synthetic data
with other benchmarked methods

Sensitivity PPV F-score P value

Our method
Range network topology 0.021* 0.007* 0.011* 0.001
Temporal cascade topology 0.276* 0.111* 0.159* <0.001

TD-ARACNE (33)
Range network topology 0.062* 0.005* 0.010* 0.006
Temporal cascade topology 0.023* 0.040* 0.029* <0.001

GeneNet (9)
Range network topology 0.031* 0.005* 0.009* 0.032
Temporal cascade topology 0.071* 0.038* 0.044* <0.001

GeneReg (33)
Range network topology 0.252 0.003 0.007 0.476
Temporal cascade topology 0.655 0.010 0.019 0.895

*Significant at 0.05; explicit P values are for the F-score.

A B C

D E F

Fig. 1. Results of gene selection. Representation of selected genes for a representative patient. Graphs A–D successively represent genes that have consistent
up-regulation at a given time, noted in bold (t1–t4, respectively). Graph E shows genes that are highly expressed through all four time-points. Graph F shows
all of the retained genes.
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groups (i.e., it is one of the 183 common genes) appears as a major
hub in all three networks. Additionally, the leukemic cells share
an important hub gene, DUSP1, as shown in Fig. 2 A and B. The
temporal evolution of the signal is shown in Fig. S2. Genes that
are active in the two earlier time-points are massively linked,
whereas genes that are active in the latest time-points have far
fewer connections.
Though the structure and parameters of such models provide

insight into the nature of a cell gene regulatory network under a
given stimulation, the predictive aspect is its main interest. How-
ever, the nature of the inferred network is essentially statistical,
and further experimentation is necessary to distinguish causal
from correlated behavior. Perturbation experiments are the usual
mechanisms for assessing causal behavior. Consequently, as a
feasibility experiment, we examined the structure of the inferred
network and identified DUSP1 as a candidate gene. DUSP1 is a
hub gene in both aggressive and indolent networks (Fig. 2); it
shows up-regulation at the first time-point, which provides op-
portunities to measure the effect of perturbing it at later time-
points on the genes to which it is connected. Furthermore, it has
a localized subnetwork (Fig. 2D) so that effects due to pertur-
bation of DUSP1 can be distinguished from effects following
general cell perturbation concomitant to cell transfection. We
performed a biological intervention experiment using fresh pri-
mary negatively selected B cells from one aggressive CLL case
(Materials and Methods). We silenced expression of DUSP1 by
transfecting DUSP1-specific RNAi and, as a control, transfected
cells with a nontargeting RNAi (Fig. S3). We then stimulated the
BCR of these cells as previously described (12). Whole-genome
expression profiling was performed at four time-points after
BCR stimulation, using the same Human Genome U133 Plus 2.0
microarray, and preprocessed using dChip [data accessible in the
Gene Expression Omnibus (GEO) database]. Gene expression
profiles under DUSP1 silencing were then compared with model
predictions in which the expression of DUSP1 is set to zero. In
this model, the predicted expression is up-regulated, down-reg-
ulated, or constant (Fig. S4). For each probe set, prediction is
done for the last three time-point measurements. Consequently,
for each probe set, we can have 0–3 correct predictions. Con-
sidering our data, where the proportion in the three categories
are not equivalent (the number of up-regulated, down-regulated,
and constant gene expressions are different), the random pre-
diction of one of these three categories is correct with a proba-
bility of 45%. However, the observed modulation of expression
in this experiment shows 62% correct predictions for genes with
a direct link to DUSP1 at t2 (P value 0.0041) (Table 2). At later
time-points, the predictive accuracy decreases (t3: 54%, P value =
0.08, and t4: 43%, P value = 0.7). At t4, our predictions are not

significantly better than noise; this can be explained by a slow
accumulation of the errors, because predictions for time t4 take
into account predictions made at time t2 and t3. Although the
predictive power of our model decreases in the later time-points,
results are promising and demonstrate the possibility of an ori-
ented modulation of the gene regulatory network in future work.

Discussion
We developed a general statistical method for analyzing gene
expression as a means to infer a temporal regulatory network.
We first ascertained the performance of this method on synthetic
data before analyzing biological data sets. We applied this method
to model the response of three different cell groups—healthy B
cells, indolent CLL cells, and the most aggressive CLL B cells—
in response to an in vitro stimulation. The results demonstrate
different patterns of the genetic program used by each cell group
after antigenic stimulation, as shown in the graphical represen-
tation of the inferred networks (Fig. 2). When focusing on the
genetic program of the more aggressive leukemic cells, several
points of convergence (overlap) are found in the networks inferred
by our method and by other benchmark methods (Table S3).
Considering specific topologies of these networks, EGR1 appears
as a hub (regulating here more than 10 others genes) for all of the
methods, whereas DUSP1 only appears as a hub for our method
and GeneNet. Still focusing on the more-aggressive leukemic cells,
we used our in silico model to predict the effects of perturbing the
genetic program of these cells. This prediction ability imposes
specific constraints on model inference (Fig. S5). Obtaining mul-
tiple points of measurements via microarray experiments also
poses a great challenge when analyzing human cells. Thus, the
study deals with a relatively small number of subjects, time points,
and points of measurement, including a total of 152 microarrays.
The inference method, as a result, explicitly imposes sparseness in
the inferred network. The preliminary results suggest the feasi-
bility of such an approach for oriented genetic program modula-
tion. Furthermore, 20% (183 of 960) of the probe sets are shared
by the three networks within separate analyses, which suggests
the need for further study toward an understanding of how
such networks are related and how such networks evolve from a
healthy state to the more aggressive state and why, as a conse-

Fig. 2. Visualization of inferred networks. The gene regulatory network of the most-aggressive leukemic B cells (A), the indolent leukemic B cells (B), and
healthy B cells (C) are represented. Nodes represent genes, and edges statistical relationships between genes. For each network, hubs are highlighted in color.
As the number of hubs decreases between aggressive, indolent, and healthy networks, the structure of the network is changed. Subnetworks for DUSP1 (D)
and EGR1 (E) in the most-aggressive leukemic B-cell networks. The concerned gene is highlighted in red. Direct links are shown in navy blue, and indirect links
are shown in pale blue. EGR1 is a gene whose influence is very large, because its subnetwork takes a large part of the complete network. In contrast, DUSP1
has a limited subnetwork. Visualization generated using R and R package igraph.

Table 2. Percentage of correct predictions between observed
and inferred network after the silencing of DUSP1

t2, % P value t3, % P value t4, % P value

Linked 62 0.004 54 0.08 43% 0.70
Not linked 56 <0.001 59 <0.001 40% 0.97
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quence, genes are specific to one state (healthy, indolent, or
aggressive). To solve this issue we may create a network inferred
with all of the patients irrespective of their category. However, in
such a model, an interaction between two genes might depend on
both the incoming stimulation and the state of the considered
cell. Furthermore, as shown in the perturbation experiments,
analysis of the network structure of such statistical models iden-
tifies target genes, typically hubs, for modulation. Ultimately, we
should target those genes whose expression can be perturbed
under the model in a way leading to an oriented modulation of the
cancer cell phenotype. For the particular genetic background and
cancer stage of each patient, the method could be used to generate
personalized models enabling patient-specified modulations of
these cancer-disrupted cellular programs.

Materials and Methods
Genes are initially under two states: stimulated and unstimulated (control
situation). Their differential expression profiles were computed by subtracting
unstimulated from stimulated expression levels at each of the measured time-
points. Furthermore, a data set X containing N genes, P patients within a
subpopulation, and four time points (t1,. . .,t4) was considered. In this study,
each subpopulation (healthy, indolent, and aggressive) is modeled separately.

Gene Selection.Gene selection was done in two steps. First we selected a large
number of highly expressed genes based on a Laplace mixture model (step 1)
(22). We then used a mixture model, estimated by an expectation-maximi-
zation (EM) algorithm, to select, among the remaining genes, those with a
specific pattern of expression (step 2). In the mixture model, gene expres-
sions were assumed to come from a finite mixture of probability distri-
butions, with each mixture component m = 1,. . .,5 corresponding to a differ-
ent cluster. In our case, clusters m = 1,. . .,4 indicate localized up-regulation
of a gene at time tm and cluster m = 5 indicates a gene that is not strongly
affected by BCR stimulation and is hence excluded from further analysis.
Though the parametrization across subpopulations is the same, the actual
parameters differ. Formally, we assume that we want to maximize the fol-
lowing likelihood function: LðΦ;XÞ=∏N

n=1

P5
m=1pðXn:: jm;ΘmÞπm, where

Φ= ðπ1; . . . ; πM ;ΘÞ9, P5
m=1πm = 1, πm ∈ ð0; 1Þ for all m, Θ contains all of the

parameters Θ1,. . .,Θ5 assumed to be distinct, and Xn.. is the vector expression
for gene n across all patients and time points. The mixture proportions for
each cluster are πm. Conditional probability for a given gene Xn.. in a given
cluster is defined as pðXn:: jm;ΘmÞ=∏P

p=1∏
4
i=1pðXnpti jm;ΘmÞ. The subscripts

on X specify gene n, patient p, and time point ti. For purposes of categori-
zation only, time points are modeled as independent. Additionally, the
model enforces a common labeling of a given gene across all subjects within
a subpopulation. Consequently, disease-related genes exhibiting consistent
temporal structure across subjects within a given subpopulation will have a
sharp posterior probability under the model, whereas those that respond to
BCR stimulation but vary in their response within a subpopulation will not.
Following convergence of EM-fitting, each gene for all P patients within a
subpopulation is assigned to the cluster with maximum a posteriori proba-
bility. We developed a simple parameterization of pðXnpti jm;ΘmÞ to account
for the observed predominance of up-regulation at the specified time-points
in differential expression. Specifically, genes responding to BCR stimulation
are fit to the following model for pðXnpti jm;ΘmÞ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1
2bm

exp
�
−
��Xnptm − θm

��
bm

�
; 1≤ i≤ 4; i=m

λm+
ti

2
exp

�
−λm+

ti
Xnpti

�
; Xnpti > 0; 1≤ i≤ 4; i≠m

λti−
2

exp
�
λti− Xnpti

�
; Xnpti ≤ 0; 1≤ i≤ 4; i≠m

1
2cti

exp
�
−
��Xnpti

��
cti

�
; 1≤ i≤ 4; m= 5;

where bm, cti , λti , λmti
are positive real numbers and θm are real numbers.

These parameters are estimated by the EM algorithm. The use of expo-
nential and Laplacian distributions better captures the heavy-tailed behavior
observed in responding genes. The statistical significance of the resulting
model was computed using a permutation approach (34, 35), and signifi-
cance was computed by comparing the log-likelihood score from EM-fitting
of the original unpermuted data to the distribution of scores obtained using
different permutations for each gene within a trial. Moreover, our clusters

are validated by an unsupervised clustering method (Fig. S6). The list of
selected genes consists of both the highly differentially expressed genes
(step 1) and genes with a specific expression pattern (step 2). Let Nsel be the
length of this list. We eventually attribute a categorical label to each se-
lected gene describing at which time-point its expression is the highest. In
the following, let m(i) be the categorical label of gene i.

Model Inference. After selecting the genes as described above, we define
a linear predictive model:

xjp: =
XNsel

i =1

FmðiÞmðjÞωij   xip: + ηj ;

where xjp: = ðxjpt1 ; xjpt2 ; xjpt3 ; xjpt4 Þ9 and ηj: = ðηjt1 ; ηjt2 ; ηjt3 ; ηjt4 Þ9 is the noise. Two
sets of parameters are used with a specific role. The first term, ωij, captures
the relative influence of one gene on another compared with other genes in
the putative network. The second term is the 4 × 4 matrix Fm(i )m(j ), which
quantifies the mode of interaction and is indexed by the categorical label
(1,. . .,4) m(i), m(j) of genes i and j, inferred during the previous step. Notice
that matrix Fm(i )m(j ) permits the link between genes i and j to evolve across
time; this results in a global optimization criterion over the sets ωij and
Fm(i )m(j ), minimizing the L2 norm of the residuals. We then set two con-
straints: (i) ∀ði; jÞ∈〚1;Nclust〛

2
;ωij ≥ 0 and (ii) ∀j∈〚1;Nclust〛,

PN
i=1ωij ≤d,

where d is a nonnegative parameter estimated by cross-validation. The
constraints on ωij ensure that only a small number of genes will have a sig-
nificant influence on any one gene, leading to sparse interaction models.
The second constraint is a Lasso penalty. However, no constraint is placed on
the number of genes that any single gene may influence. Though the full
optimization is nonconvex, given the set ωij, there is an analytic solution
for the set Fm(i )m(j ). Similarly, given the set Fm(i )m(j ), one can solve for the
set ωij via a quadratic program, which leads naturally to a coordinate as-
cent approach. The result of the optimization is a connectivity network
described by the nonzero elements of ωij combined with a set of cluster-
dependent interaction models described by the set Fm(i )m(j ). Each matrix
Fm(i )m(j ) is further constrained to have the following form:

FmðiÞmðjÞ =

2
664

0 0 0 0
amðiÞmðjÞ 0 0 0
bmðiÞmðjÞ amðiÞmðjÞ 0 0
cmðiÞmðjÞ bmðiÞmðjÞ amðiÞmðjÞ 0

3
775;

where am(i )m(j ), bm(i )m(j ), cm(i )m(j ) are reals. This structure has two conse-
quences. From a practical standpoint it reduces the complexity of the opti-
mization from a search over 16 parameters for each Fm(i )m(j ) to one over
three parameters. Consequently, interactions depend only on time-index
differences rather than absolute time index. Matrices are lower triangular
with a null diagonal; these conditions ban the possibility of feedback loop.
Furthermore, because the categorical label indexes the peak in differential
expression within the temporal profile we only consider causal predictor
models, which is why we impose mðiÞ≥mðjÞ⇒ FmðiÞmðjÞ = 0. To summarize,
results of the clustering are used both to select genes that are the most
affected by the stimulation and to impose some constraints on the linear
model. The resulting gene regulatory network is then represented by link
strength ωij.

Simulations. To evaluate our inference methodology, a simulation step in
which the initial gene regulatory network is perfectly known is essential for
comparison purposes. To simulate in silico data, we need to choose both a
network topology and a dynamicmodel that spreads the signal from genes to
genes. We choose two reliable network topologies: a scale-free topology
generated with RANGE (25) and a temporal cascade topology that represents
the topology of the network when the cell is stimulated by an environ-
mental stimulus (3, 26). To simulate gene expression, we assume that ex-
pression of gene A at time t depends on expression of its regulators at time
(t − 1). To make the simulations more realistic, we used a nonlinear function
to modelize interactions, fðxÞ= C × expðaxÞ

b+expðaxÞ, where a has been set to 1/3.5, b has
been set to 30, and C has been set 40; this is a logistic function with a sig-
moid form, classically used in modeling gene network dynamic (27). Fur-
thermore, we compared our reverse-engineering method with four other
algorithms: GeneNet (9), based on graphical Gaussian models; GeneReg (30),
a regression-based method that extrapolates the number of time points
by B-spline regression; TD-ARACNE (10), the time-course data equivalent of
the information theory method ARACNE (36); and a DBN method (31). We
then compare the inferred matrix with the real matrix. We calculate the
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predictive positive value (PPV), defined as TP/(TP + FP), the sensibility, de-
fined as TP/(TP + FN), and the F-score, defined as 2 × sensitivity × PPV/
(sensitivity + PPV), where TP represents the true positives, FP the false pos-
itives, and FN the false negatives. The F-score combines both sensitivity and
PPV and is known to decrease when the number of genes included in the
model increases (10). We finally compute a conditional permutation test for
all of these indicators of performance.

Microarrays, RNA Interference, and Validation Experiments. Primary micro-
array data were extracted from Vallat et al. (12) and consisted of 136 samples
[four time-points for both unstimulated (US) and stimulated (S) cells from six
healthy donors, six patients with indolent CLL, and five patients with ag-
gressive CLL)]. Patients with indolent CLL (with IGVH gene mutated and
ZAP70-negative expression) had stable disease over time, whereas patients
with aggressive CLL (4/5 with IGVH gene unmutated and 6/6 with ZAP70-
positive expression) had a rapid clinical course (12). For the intervention
experiment performed here, peripheral blood was obtained from one pa-
tient with aggressive CLL included in our previous study (12). B cells were
negatively selected (RosetteSep B-cell enrichment mixture; Stemcell Bio-
technologies) and isolated by density gradient centrifugation over Ficoll-Paque
PLUS (Pharmacia). Quality of the selection was assessed by flow cytometry on
a Cytomics FC500 system (Beckman-Coulter) after CD5-PE/CD19-FITC staining
(BD Biosciences) and was >98% of total cells. Cells were cultured at 37 °C in 5%
CO2 for 6 h in RPMI-1640 medium supplemented with 10% heat-inactivated
FCS, 2 mM L-glutamine, and 24 μg/mL gentamicin. Cells were transfected
with a pool of four designed DUSP1 siRNA (siGenome SMARTpool reagent;
Dharmacon Inc.) or with a non–sequence-specific siRNA (siCONTROL non-
targeting siRNA no. 1; Dharmacon Inc.) at a final siRNA concentration of 100
nM using the Nucleofector apparatus and cell line Nucleofector kit

according to the manufacturer’s instructions (Amaxa Biosystem). Cells were
then cultured at 37 °C in 5% CO2 in supplemented RPMI-1640 culture me-
dium. After 12 h, the cells were recovered by density gradient centrifugation
over Ficoll-Paque PLUS (Pharmacia), washed, and starved for 4 h at 37 °C/5%
CO2 in supplemented RPMI-1640. Starved-transfected and mock-transfected
B cells at a density of 107cells/mL were divided in two. Half of the cells
were BCR-stimulated by goat F(ab′)2 anti-human IgM-BIOT (Southern Bio-
technology) at 20 μg/mL and cross-linked by 20 μg/mL avidin (Sigma-Aldrich),
washed, and resuspended in supplemented RPMI-1640 (12). At four time-
points (60, 90, 210, and 390 min) after BCR stimulation, total mRNA was
collected over four experimental conditions [DUSP1 silenced (US/S) and
mock-transfected (US/S)]. cRNA was prepared in accordance with the Affy-
metrix protocol and hybridized to the Human Genome HU133 Plus 2.0
microarray, which contains 54,675 probe sets. We further normalized
these 16 microarrays with the previous 136 samples with the invariant set
method and the model-based expression index obtained by the perfect-
match-mismatch (pm-mm) model using dChip software (32) (all data are
accessible in the GEO database under accession no. GSE39411).
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