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Abstract

The interventionist account of causation offers a criterion to distinguish causes
from non-causes. It also aims at defining various desirable properties of causal
relationships, such as specificity, proportionality and stability. Here we apply
an information-theoretic approach to these properties. We show that the inter-
ventionist criterion of causation is formally equivalent to non-zero specificity,
and that there are natural, information-theoretic ways to explicate the distinc-
tion between potential and actual causal influence. We explicate the idea that
the description of causes should be proportional to that of their effects. Then
we draw a distinction between two ideas in the existing literature, the range of
invariance of a causal relationship and its stability. The range of invariance is
related to specificity and range of causal values. Stability concerns the effect of
additional variables on the relationship between some focal pair of cause and
effect variables. We show how to distinguish and measure the direct influence
of background variables on the effect variable, and their influence on the re-
lationship between the focal cause and the effect variable. Finally, we discuss
the limitations of the information-theoretic approach, and offer prospects for
complementary approaches.
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1. Invariance and causal explanation

The interventionist approach to causal explanation is based on the insight
that “causal relationships are relationships that are potentially exploitable for
purposes of manipulation and control” (Woodward 2010, p. 314). Interven-
tionists approach causation via the relationships between the variables that
characterise an organised system. These relationships can be represented by
a directed acyclic graph. In such a graph, variable C is a cause of variable E

when a suitably isolated manipulation of C would change the value of E. With
suitable restrictions on the idea of ‘manipulation’ this test provides a criterion
of causation, distinguishing causal relationships between variables from merely
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correlational relationships (Woodward 2003, pp. 94-107).
The interventionist account only applies to ‘change-relating’ generalisa-

tions, where at least one intervention upon C will produce some change in E.
Generalisations which are not change-relating are not candidates to provide
causal explanations. Non-change-relating generalizations may state the im-
possibility of certain affairs: nothing can be accelerated past the speed of
light. Or they may relate an outcome to a reliable but irrelevant antecedent:
men who take birth control pills will never become pregnant (Woodward 2000,
206f).

Change-relating generalisations provide causal explanations in virtue of
being invariant under interventions rather than because they hold widely in
nature, or have nomological force as traditionally conceived (Woodward 2003,
p. 16):

[E]xplanation has to do with the exhibition of patterns of counterfactual de-
pendence describing how the systems whose behavior we wish to explain would
change under various conditions. . . . Explanatory generalizations allow us
to answer what-if-things-had-been different questions: they show us what the
value of the explanandum variable depends upon. (Hitchcock and Woodward
2003, pp. 182-183)

Invariance under intervention simply means that the relationship between
variables C and E continues to hold when interventions are made on C.

I will say that a generalization is invariant simpliciter if and only if (i) the
notion of an intervention is applicable to or well-defined in connection with
the variables figuring in the generalization . . . and (ii) the generalization is
invariant under at least some interventions on such variables. . . . To count as
invariant it is not required that a generalization be invariant under all inter-
ventions. (Woodward 2000, p. 206)

The idea of invariance is sometimes expressed in terms of the ‘stability’ of
the generalization:

A generalization is invariant if (i) it is . . . change-relating and (ii) it is stable
or robust in the sense that it would continue to hold under a special sort of
change called an intervention. (Woodward 2000, p. 198)

However, as we will shortly see, it is more convenient to reserve the term
‘stability’ for a different idea associated with the interventionist account.

Woodward makes a clear distinction between the actual criterion of causa-
tion and various desirable properties of causal relationships. The criterion of
causation is minimal invariance – invariance in the face of at least one possi-
ble intervention. A wider range of invariance is a desirable property of causal
relationships: all other things being equal, a relationship that holds for more
values of C and E is a more powerful means of intervention. However, while a
minimally invariant relationship may be less useful, it is not less causal.

‘Specificity’ is another desirable property of causal relationships. The intu-
itive idea behind specificity is that interventions on C can be used to produce
any one of a large number of values of E, providing what Woodward terms
“fine-grained influence” over the effect variable (Woodward 2010, p. 302).

‘Proportionality’ is a further desirable feature of causal relationships, or,
more accurately, of how causal relationships are described:

... causal description/explanation can be either inappropriately broad or gen-
eral, including irrelevant detail, or overly narrow, failing to include relevant
detail. (Woodward 2010, pp. 296-7).

Woodward provides several striking example where a causal explanation is
weakened because the choice of variables suffers from one of these vices. Saying
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that one person went bungy-jumping whilst another did not because only one
has a ‘gene for bungy-jumping’ is less explanatory than saying that only one has
a gene associated with risk-seeking behavior. The former explanation excludes
important information that the latter provides.

‘Stability’ is a final desirable property of causal relationships. Whilst in-
variance concerns the relationship between C and E, stability concerns the
relationship between other variables and that relationship. Intuitively, C is
a stable cause of E if it continues to cause E across some range of values of
other variables Z, W, etc. These other variables are sometimes referred to as
‘background’ variables. There is much more to be said (and settled) about
stability and its relationship to invariance, as we will see below.

In earlier work with other collaborators we have developed an information-
theoretic approach to measuring the specificity of causal relationships within
the interventionist framework (Griffiths et al. 2015). In this paper we extend
that approach to (1) explore the relationship between invariance and specificity,
(2) distinguish between potential and actual causal influence, (3) explicate
the idea of proportionality, (4) distinguish invariance from stability, (5) draw
a further distinction between the stability of an effect and the stability of
the relationship between cause and effect, and (6) show how to measure both
forms of stability. We conclude by discussing the limitations of an information-
theoretic approach and offer prospects for complementary approaches.

2. Specificity and invariance

In earlier work we and our collaborators proposed a measure of specificity
formalising the idea that, other things being equal, the more a cause specifies
a given effect, the more knowing the value set for the cause variable will inform
us about the value of the effect variable:1

Spec: the specificity of a causal variable is obtained by measuring how much
mutual information interventions on that variable carry about the effect vari-
able. (Griffiths et al. 2015)

The mutual information of two variables is the redundant information
present in both variables. Where H(X) is the entropy of X (see Appendix),
the mutual information of X with another variable Y, or I(X; Y), is given by:

I(X; Y) = H(X) −H(X|Y)

Mutual information is not in itself a suitable measure of causal influence.
It is symmetrical, that is I(X; Y) = I(Y;X), and variables can share mutual
information without being related in the manner required by the intervention-
ist criterion of causation. However, our measure of specificity does not simply
measure the mutual information between variables C and E, but the mutual
information between interventions on the variable C and the variable E. In-
terventions can be written in equations by using the do( ) operator: do(C)
means that the value of C results from an intervention on C (Pearl 2009). To

1This measure has been independently proposed in cognitive sciences by Tononi, Sporns,
and Edelman (1999) and in computational sciences by Korb, Hope, and Nyberg (2009). For
related measures see also Ay and Polani (2008) and Janzing et al. (2013). Ay and Polani’s
measure captures what we call sad below. See Pocheville (n.d.), for a review.
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simplify writing, we will use a hat on the variable: do(X)≡X̂.2 Specificity is
thus measured by I(Ĉ;E). This is not a symmetrical measure because the fact
that interventions on C change E does not imply that interventions on E will
change C: in general, I(Ĉ;E) 6=I(Ê;C).3 Furthermore, any variables that satisfy
the interventionist criterion of causation in some context will show some mu-
tual information between interventions and effects in this context. If C→ E is
causal, that is, invariant under at least one intervention on C, then I(Ĉ;E) > 0.
Causation is equivalent to non-zero specificity (see also Pocheville n.d.).

This raises the further question of how the specificity of a causal relation-
ship relates to its range of invariance – the range of values of the variables
across which a causal relationship holds. Marcel Weber has argued in qualita-
tive terms that the degree of specificity is just the same thing as its range of
invariance (Weber 2006). Woodward questioned Weber’s proposed equivalence
because a causal relationship might hold across a large range of invariance but
fail to be bijective, and thus to offer the sort of fine-grained control associated
with the idea of specificity: “a functional relationship might be invariant and
involve discrete variables but not be 1–1 [injective] or onto [surjective]” – that
is, it might fail to be bijective (Woodward 2010, 305 fn 17). In our earlier paper
we argued that measuring the mutual information between two variables is a
good way to formalize Woodward’s idea that the mapping between the cause
and effect may ‘approximate a bijection’. We then showed that with a slight
correction corresponding to Woodward’s caveat, Weber is correct. The mutual
information between cause and effect variables will typically be greater when
these variables have more values, simply because the entropy of both variables
is higher. Woodward’s caveat corresponds to the fact that it is not enough to
increase the number of values of a cause variable unless the additional values
of the cause sufficiently map onto distinct values of the effect (Fig. 1 and 2).
Increasing the entropy of the cause variable will not increase mutual informa-
tion when no additional entropy in the effect variable is captured. The range of
invariance corresponds to the ‘effective’ entropy of the cause, that is, where all
the values which make the same difference to the effect have been aggregated
(Section 4).

3. Actual and potential difference-making

Our measure of specificity depends on what probability distribution we choose
to impose on the causal variable C (as well as on the mapping from C to E).
This is something that earlier, qualitative discussions seemed to be able to do
without. In our earlier paper we showed that this is a feature and not a bug of
our measure. As we will now discuss, measuring specificity with different prob-
ability distributions over Ĉ corresponds to different views of causal specificity
in the existing, qualitative literature.

One way to measure specificity corresponds to Woodward’s characterisa-
tion of fine-grained influence (inf) (Woodward 2010). In his presentation the

2We take this convention from related work in computer sciences applying information
theory to causal modeling (e.g. Ay and Polani 2008; Lizier and Prokopenko 2010).

3These quantities can be equal if and only if both are null, i.e. iff the two variables are
not causally connected. Indeed, at least one of these quantities is null, since C and E are
variables in a causal, thus acyclic, graph: if C causes E, E cannot feed back on C.
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Figure 1: Causal mapping showing a bijection between causal values and effect val-
ues. Complete ignorance (maximum entropy) obtains when each value of the ef-
fect has a probability of 1

2 before intervening on the value of the cause: H (E) =

−
∑2

j=1 p(ej) log2 p(ej) = −
∑2

j=1
1
2 log2(

1
2 ) = 1 bit. After knowing the value set

for the cause (c1 or c2), the effect is fully specified and the conditional entropy
is: H(E|Ĉ) = −

∑2
i=1 p(ĉi)

∑2
j=1 p (ej|ĉi) log2 p(ej|ĉi) = −

∑2
i=1

1
2
∑2

j=1 1 log2(1) =
0 bit. The information gained by knowing the cause can be obtained by measuring
the difference between the entropy before and the entropy after intervening to set
the value of the cause. This quantity is the mutual information between E and Ĉ:
I(E; Ĉ) = H(E)–H(E|Ĉ) = 1 bit.

Figure 2: Here, different values of the cause lead to the same outcome. As in Figure 1,
H(E) = 1 bit. Although here two values of the cause can lead to the same effect,
intervening to set the value of the cause fully specifies the value of the effect just as
effectively as it does in Figure 1. Therefore, the difference in uncertainty about the
effect between before and after intervening to set the value of the cause is the same:
I(E; Ĉ) = H(E)–H(E|Ĉ) = 1− 0 = 1 bit.
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value of C depends only on interventions by an idealised agent. Since the aim
is to characterise how one variable causally depends on another, we assume
that this agent does not favour one value over another, so that every value
is equiprobable. The distribution of values of C is therefore the maximum
entropy distribution:

inf: I(Ĉ;E), where the distribution of Ĉ has maximum entropy.

Another non-arbitrary choice is to construct a distribution which maximizes
specificity. Such a distribution does not necessarily maximize the entropy of
the cause variable (see Pocheville n.d.):

MaxSpec: I(Ĉ;E), where the distribution of Ĉ maximises Spec.

One formal advantage of MaxSpec is that it is insensitive to finer redescrip-
tion of the variables. MaxSpec is unaffected if we divide C or E into a greater
number of nominal values. Whereas inf measures how much influence C ex-
erts on E in an unbiased set of intervention experiments, MaxSpec measures
how much influence C exerts on E under ideal conditions. This is the ‘causal
power’ of C with respect to E (Korb, Hope, and Nyberg 2009), and can also
be thought of as a measure of C’s potential influence on E. We are inclined
to think MaxSpec is a better explication than inf of the intuitive idea that a
system has an intrinsic causal structure and that this structure is independent
of how the system operates on some particular occasion.

A different view of causal specificity has been advocated by Waters (2007).
Waters draws attention to contexts in which scientists are only interested in
the actual causes of differences in some population, situations in which, he
argues, they seek to characterise the causes which are ‘specific actual differ-
ence makers’ in that population (sads). In earlier work we argued that this
amounts to measuring Spec when C takes the distribution it has in the actual
population. Although Water’s stresses the observed distribution of properties
in a population, his discussion makes it clear that he intends sad to be a con-
ception of causation, not merely of correlation, so rather than measuring the
mutual information between the actual distributions of C and E, we need to
imagine a set of interventions that create the same distribution of values of C
that we see in the population, hence:

sad: I(Ĉ;E) where the distribution of Ĉ is identical to the actual distribution
of C in some population.

We interpret sad as a measure of a complementary idea to potential causal
influence, namely actual causal influence – how much difference a cause actually
makes to an effect.4 For example, in a causal graph representing a firing squad,
the potential causal influence of the variable shoot with respect to the variable
die, as measured by MaxSpec, will be greater than that of the variable say
boo, but say boo will have greater actual causal influence on die than shoot
does in a population where more prisoners die from fright than from bullets.
It may also be the case that the range of C within which there is a relationship
between C and E does not occur in the population from which we derive the
distribution of C. The ‘experiment of nature’ does not necessarily include the
experiment that reveals how E depends on C, leading to no actual influence.5

4The same idea has been termed ‘information flow’ (Ay and Polani 2008; see Pocheville
n.d.)

5In addition, Weber (2013) has argued that in the biological sciences specificity should
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4. Proportionality

The proportionality of cause to effect is a matter of “whether the cause and
effect are characterized in a way that contains irrelevant detail” (Woodward
2010, p. 287). This idea has been discussed extensively in the philosophy of
causation, where it has been explained via examples and qualitative charac-
terisations:

Yablo suggests that causes should “fit with” or be “proportional” to their ef-
fects—proportional in the sense that they should be just “enough” for their
effects, neither omitting too much relevant detail nor containing too much ir-
relevant detail. (Woodward 2010, p. 297)

In an effort to characterise the idea more precisely, Woodward has char-
acterised it as a ‘proportionality constraint’ on the mapping between value of
the cause and values of the effect.

(P) There is a pattern of systematic counterfactual dependence (with the de-
pendence understood along interventionist lines) between different possible
states of the cause and the different possible states of the effect, where this
pattern of dependence at least approximates to the following ideal: the depen-
dence (and the associated characterization of the cause) should be such that
(a) it explicitly or implicitly conveys accurate information about the conditions
under which alternative states of the effect will be realized and (b) it conveys
only such information – that is, the cause is not characterized in such a way
that alternative states of it fail to be associated with changes in the effect.
(Woodward 2010, p. 298)

We stress that Woodward is not adding an additional condition to his cri-
terion of causation. Like specificity, proportionality is meant to enrich the
theory of causation by capturing why some causal facts may legitimately be
of more interest to us than others, and thus may be highlighted in our expla-
nations whilst other causal facts are omitted. Highly specific causes provide
more precise control over an effect, and explain outcomes with greater pre-
cision. Proportional descriptions of causes provide us with all and only the
information relevant to intervening or explaining with those causes.

We are now in a position to spell out the relationship between proportion-
ality and specificity. If we choose a set of values for a causal variable, and a
probability distribution over those values, which maximizes specificity, then,
by definition, we cannot have omitted any relevant detail, since we have ex-
plained as much of the differences in the effect variable as possible. How can
we make sure not to include any irrelevant detail? This is performed by mini-
mizing the entropy of the cause variable by aggregating values which make the
same difference, whilst maintaining its specificity: the less the entropy of the
cause, the less information about the cause we have included in our explana-
tion. Ideal proportionality is thus achieved when the cause is described in a

be assessed using a wider range of values of C than actually occur in any given population,
but not all possible values of C. He suggests we should restrict ourselves to ‘biologically
normal’ values of C. We interpret this to mean that C should be restricted to the range
of variation that could be produced by known mechanisms operating on the timescale of
whatever process we are trying to study. We have suggested that within that range, Ĉ

should conform to the maximum entropy distribution and named this additional flavour
of specificity rel for relevant specificity (Griffiths et al. 2015). But it is also possible to
construct a version of relevant specificity based on the MaxSpec measure.
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Figure 3: The causal mapping in Yablo’s example. The re-description of the causal
variable in terms of red/∼red reduces the entropy from 2 bits to 1 bit (assuming
equiprobability of colors).

way which minimizes its entropy and still maximizes specificity.6

We can see how this works with Yablo’s original example (Yablo 1992, p. 4).
A pigeon called Sophie has been trained to peck in response to any stimulus
which is some shade of red. Yablo contrasts two explanations:

1. Sophie pecked because she was exposed to a red stimulus
2. Sophie pecked because she was exposed to a scarlet stimulus

Yablo suggests that 1 is a better causal explanation than 2. Like many
philosophical thought experiments however, this one is underspecified. We
have two variables: P, with the values ‘peck’ and ‘∼peck’, and S. What values
should S take? The combined probability of all values of a random variable
must sum to one, so let us take the values of S to be the actual colour chips
available in the laboratory. We stipulate that there are colour chips of more
than one shade of red, and of some non-red shades. Finally, we stipulate that
Sophie has been trained to peck at each of the colour chips that is a shade of
red, giving us a causal graph in which P has the value ‘peck’ if and only if S
has one of the values which is a shade of red.

We now construct the maximum specificity distribution, in this case making
the combined weight of probability on the red values equal to that on the non-
red values. The graph we have described resembles that in Figure 2 above,
and is exactly that graph if there are just two red and two non-red values
(Fig. 3). If we coarse-grain the values of our variable, so that S now has just
two values, red and ∼red, then we get the graph in Figure 1. S now has the
same specificity as before, but the entropy of S has been reduced from 2 bits
to 1 bit. This is the optimally proportional way to divide the variable S into
discrete values. No more specificity can be obtained by fine-graining and any
further coarse-graining will reduce the specificity.

6This means aggregating values {ci, cj} for which p(ek|ĉi, ẑl) = p(ek|ĉj, ẑl) for any ek and
zl of interest, where C is the cause, E the effect and Z a set of background variables. We
suppose here that the effect E is already described in the fashion of interest. Its values could
be similarly aggregated.
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The artificiality of the example produces some problems. Whilst this is
the optimal way to discretise the variable S for this single experiment with
Sophie, it is not optimal for a wider experimental program! A better example
of proportionality might be an experimentalist who sets her values for S to
correspond to the distinctions in the pigeon’s own tetrachromatic spectrum,
since this would make S express only the ‘differences that can make a difference’
to the pigeon’s behavior.

Woodward’s other example of a failure of proportionality is taken from
psychiatric geneticist Kenneth Kendler:

To illustrate how this issue of the appropriateness of level of explanation may
apply to our evaluation of the concept of “a gene for...” consider these two
“thought experiments”:
Defects in gene X produce such profound mental retardation that affected indi-
viduals never develop speech. Is X is a gene for language?
A research group has localized a gene that controls development of perfect pitch
(57) [(Alfred 2000)]. Assuming that individuals with perfect pitch tend to par-
ticularly appreciate the music of Mozart, should they declare that they have
found a gene for liking Mozart?
For the first scenario, the answer to the query is clearly “No.” Although gene X
is associated with an absence of language development, its phenotypic effects
are best understood at the level of mental retardation, with muteness as a
nonspecific consequence. X might be a “gene for” mental retardation but not
language.
Although the second scenario is subtler, if the causal pathway is truly gene vari-
ant → pitch perception → liking Mozart, then it is better science to conclude
that this is a gene that influences pitch perception, one of the many effects
of which might be to alter the pleasure of listening to Mozart. It is better
science because it is more parsimonious (this gene is likely to have other effects
such as influencing the pleasure of listening to Haydn, Beethoven, and Brahms)
and because it has greater explanatory power. (Kendler 2005, pp. 1249-50, his
emphasis)

The grain of description of the cause variable in these cases is fixed by the
technology used to detect the genetic variant. The failure of proportionality
is supposedly the result of describing the effect in too fine-grained a manner.
But ‘proportionality’ here is not the same phenomenon that we identified in
the pigeon-pecking case, nor is it really a matter of fine- versus coarse-graining
values. The alternative to saying that the genetic variant is a gene for language
or a gene for liking Mozart is to say that it is a gene for a variable which explains
a host of cognitive effects. This corresponds to redrawing the causal graph by
inserting a variable, not to redescribing the effect variable. Similarly, adding
connections between the cause and additional effect variables does not amount
to fine-graining the values of the original effect variable: liking Mozart is not
an exclusive alternative to liking Haydn (Fig. 4).

In these two later examples it is the causal graph itself that is too ‘coarse
grained’ rather than one of the variables. Choosing which variables to in-
clude in the graph and choosing how finely or coarsely to discretize a variable
are different problems.7 We therefore prefer to define ‘proportionality’ more
narrowly:

Proportionality constraint: given an effect variable E that is a target of inter-
vention or causal explanation, a causal variable C should be discretised so as

7The other issues being discussed under the heading of ‘proportionality’ seem to concern
what statisticians call ‘model selection’.
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Figure 4: Causal graphs for Kendler’s example, where a gene is supposed to influence
music preferences.

to minimise the entropy of C whilst maximising specificity for E.

The main philosophical dispute in which the notion of proportionality has
figured concerns whether lower-level, reductive explanations of phenomena are
always superior to high-level explanations of the same phenomena. Craver
(2007, chap. 6), for example, has argued that in some cases the lower-level
explanation merely recognises additional differences that make no difference.
Whether this argument is successful or not, our version of the proportionality
constraint seems suitable to capture the intention behind it.

5. Stability

The philosophical landscape

The interventionist account of causation aims to identify causes that “are likely
to be more useful for many purposes associated with manipulation and con-
trol” (Woodward 2010, p. 315). One aspect of this is the ‘stability’ of causal
relationships.

Among change-relating generalizations, it is useful to distinguish several sorts
of changes that are relevant to the assessment of invariance. First, there are
changes in the background conditions to the generalization. These are changes
that affect other variables besides those that figure in the generalization itself.
. . . Second, there are changes in those variables that figure explicitly in the
generalization itself. . . (Woodward 2003, p. 248)

At this point some terminological stipulation is needed. We will reserve the
term ‘invariance’ strictly for the properties of Woodward’s “variables that figure
explicitly in the generalization itself.” Invariance characterizes the relationship
between two variables, one of which can be used to intervene on the other. We
will refrain from using the term ‘stability’ in connection with the relationship
between those two focal variables. Instead, we use it strictly to describe how the
relationship between those two variables is related to other variables. Stability
is about whether a causal relationship continues to hold across a range of
background conditions.

Hitchcock and Woodward distinguish between two senses in which a causal
generalization may be said to hold against a ‘background’ of other factors. In
their first sense the ‘background’ to a causal generalization is simply everything
not mentioned in the generalization. Most of the background, in this sense, is
causally irrelevant. In their second sense, the ‘background’ consists of variables
that are causally relevant to the effect but not explicitly represented in the
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model (Hitchcock and Woodward 2003, p. 187). In our terms, causally relevant
background conditions are additional variables that, under some conditions,
can have some degree of specificity for the effect variable.

Sandra Mitchell has also made extensive use of something she calls ‘sta-
bility’ in an account of causal generalisations. Using ‘invariance’ in a broader
sense, rather than in the restricted sense we have stipulated, she writes that:

Stability for me is a measure of the range of conditions that are required for
the relationship described by the law to hold, which I take to include the
domain of Woodward’s invariance. . . . Stability does just the same work [as
Woodward’s invariance], however it is weaker and includes what might turn
out to be correlations due to a non-direct causal relationship. But for there
to be a distinction between stability and invariance, then we would have to
already know the causal structure producing the correlation. (Mitchell 2002,
pp. 346-7)

Mitchell’s ‘stability’ is a matter of whether a generalization holds across a
range of values of other variables that are statistically relevant to the effect, ei-
ther because they are causally relevant to it or due to confounding factors. Her
treatment of stability is thus very different from Woodward’s, and from ours.
Mitchell’s work is centrally concerned with complex systems for which there
may be no practical way to reliably and fully document their causal structure.
Hence she emphasises the scientific and pragmatic value of generalisations that
are stable in her sense irrespective of what other, more stringent requirements
they may satisfy. She also doubts the value, in her chosen context, of the
distinction between the range of invariance of a relationship and its stability.

Despite the different foci of their work, there is real disagreement between
Woodward and Mitchell about what distinguishes causally explanatory rela-
tionships between variables from mere correlations. Mitchell argues that causal
generalisations are explanatory to the extent that they are stable. Woodward’s
criterion of causation was outlined above – causally explanatory generalisations
need to be minimally invariant. Nothing more is needed to make them causally
explanatory, and without this property no amount of stability in Mitchell’s
sense will make a generalization causally explanatory. The role of stability in
Woodward’s account is not to provide a criterion of causation, but to identify
more useful causal relationships:

Invariance under changes in background conditions does not render a gener-
alization explanatory; yet greater invariance [our stability] under changes in
background conditions can render one generalization more explanatory than
another. . . . Briefly, if G is sensitive to changes in background conditions,
that is because it has left out some variable(s) upon which the explanandum
variable depends. (Hitchcock and Woodward 2003, p. 187, italics in original)

As Hitchcock and Woodward emphasise, genuine background conditions
are factors that could, and often should, be explicitly represented in a causal
model:

[C]laims about the invariance of a relationship under changes in background
conditions are transformed into claims about invariance under interventions
on variables figuring in the relationship through the device of explicitly incor-
porating additional variables into the relationship. (Hitchcock and Woodward
2003, p. 188, italics in original)

One further distinction is needed to think clearly about the relationship
between causal generalisations and background conditions. When we speak
of the ‘stability’ of some relationship C → E we may have in mind, not the
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Figure 5: On the left, a causal mapping relates values of a nominal causal variable
to values of a nominal effect variable. In this example, each causal value can lead
to two proper (and incompatible) effect values, each arrow being associated with a
probability pij = p(ej|ĉi). On the right, ‘arrows’ are now explicitly represented as
values of a new variable, A, which represents the mapping between C and E. By
definition each arrows leads to a given effect value with probability 1. (Note that
it is possible to draw three-variable mappings in two dimensions only under certain
conditions.)

influence of background variables on E, but whether the relationship C → E

itself changes across a range of background conditions. For example, alter-
native splicing of genes depends on splicing regulatory elements (sres), short
nucleotide sequences in the pre-mrna that bind protein factors that either
activate or repress the use of adjacent splice sites. The causal relationship
between the presence of an sre and binding of its protein can be affected by
the surrounding rna sequence, because the shape of the whole rna molecule
can render the sre more or less accessible to the factors for which it has an
intrinsic binding affinity. Hence the same sequence can act as an sre in one
organism, but not in the orthologous gene of another organism, due to changes
elsewhere in the gene (Wang and Burge 2008). The molecular facts in these
cases are very naturally represented as a focal causal relationship in which C

is the sequence of the sre and E is whether the protein binds or not, plus one
or more background variables representing the structure of rest of the gene,
which can interfere with that focal causal relationship.

An information-theoretic treatment

It is stability and instability in this last sense that we now proceed to analyse.
Our aim in this section is not to come up with a definitive measure of causal
stability for every purpose, but rather to show how to relate, in an information-
theoretic framework, the idea of stability of causal relationships to our measure
of causal specificity.

To start with, let us consider a causal relationship C → E represented
by a mapping between values of a (nominal) causal variable C to values of a
(nominal) effect variable E (Fig. 5). Each causal value ci can lead to one or
several effect values ej. To look at how the mapping can be influenced by a
third variable, we will focus on the arrows connecting the values ci and ej.
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Figure 6: Causal graph with a variable representing the arrows A mapping C to E as
they are affected by Z. (Note that this diagram is a causal graph relating variables,
not a mapping relating values.)

Figure 7: Diagram showing how interventions on Z can modify the mapping from C
to E. For simplicity, only a single value of the causal variable is considered.

Each arrow aij can be defined as a couple of one causal value and one effect
value. In formal terms, aij≡(ĉi, ej). When an intervention which sets C to
ci leads to ej, we will say that the causal arrow aij has been instantiated, or
that the variable A (for arrow – Fig. 6) has taken the value aij.8 The mapping
between the values of the causal variable and the values of the effect variable
is the set of these causal arrows, together with their associated conditional
probabilities.

Now, let us consider that the mapping between C and E is somehow unsta-
ble with respect to a background variable Z. That is, Z makes the instantiation
of some arrows more or less probable than it would be otherwise. We now treat
the instantiations of the arrows aij as the events to be explained, and Z as the
variable explaining them. How much Z explains the arrows can be measured
by I(A; Ẑ), as we explain now.

We first consider the arrows stemming from one causal value. Let us in-
tervene on C to set it to value ĉ1. Given ĉ1, we look at how intervening on Z

changes the probability of the arrows a1j : ĉ1 → ej that will be instantiated.9

The amount of change can be measured by the mutual information between Ẑ

and the variable A given c1, that is, in formal terms, I(A; Ẑ|ĉ1).10

Figure 7 illustrates this idea. An intervention on Z has no effect on the map-
ping when the causal probabilities are unchanged, in which case I(A; Ẑ|ĉ1) =
0 bit. The mapping between C and E is then maximally stable with respect

8Because both C and E are sets of alternative events, it is axiomatic that one and only
one arrow is instantiated in every intervention on the cause C. Also, because C and E are
nominal variables, the composite variable A is also a nominal variable.

9Given ĉ1, the probabilities p(a1j|ĉ1) sum to 1.
10We condition on ĉ1 for pedagogical reasons, but it also makes philosophical sense. If Ẑ

and Ĉ are not independent, then we want to control for Ĉ before assessing any effect of Ẑ
on the arrows, as manipulating Z can be a cause of manipulating C. We let this case aside
here (see Appendix).
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Figure 8: Causal mapping where Z is the only cause of E.

to Ẑ (in this limiting case, Z is an irrelevant background condition). An in-
tervention on Z has a maximum effect when it completely specifies the causal
arrows being instantiated, that is, when one of the causal arrows is always
instantiated when the intervention results in ẑ1 and reciprocally when ẑ2.11 In
this case I(A; Ẑ|ĉ1) = 1 bit, which is the maximum possible instability for this
mapping. In between these two limiting cases stability will come in degrees.

When more than one value of C is considered (which is a necessary con-
dition to be able to speak of C as a putative cause of E), it is reasonable to
average the conditional mutual information I(A; Ẑ|ĉi) over all the values of the
causal variable C. The rationale for this is that causal arrows stemming from
causal values that are themselves improbable (or impossible) should count less
in characterizing the properties of the mapping. Calculating this average is
equivalent to computing the conditional mutual information I(A; Ẑ|Ĉ). When
Z and C are independently manipulated, which will be our hypothesis from
now on, I(A; Ẑ|Ĉ) = I(A; Ẑ) (see Appendix). This quantity characterizes how
much Z affects the mapping between C and E or, in other words, the instability
of the mapping with respect to Z.

Stability, i.e. how much of the mapping does not depend on the background,
is represented by the difference between the entropy of the mapping, and how
much of it is explained by the background, that is H(A) − I(A; Ẑ). Of course,
this quantity does not necessarily correspond to variation in the causal arrows
that increases the specificity of C: a cause can have almost null specificity and
the causal relationship be maximally stable with respect to a given background
condition.12 Specificity answers a different question: it looks at how much
stable influence the cause can exert, irrespective of the background (when
uncontrolled) (Table 1).

Mappings between C and E do not all represent causal relationships. If C
is not a causally relevant variable with respect to E, then the mapping between
them is one where any value of C maps to all values of E (Fig. 8). The method
we just outlined may detect an effect of Z on the arrows being instantiated,
but this will be due solely to the direct effect of Z on E. What we are after is
not this direct influence of the variable Z on the effect E, it is rather how much
the cause C and the background Z interact when they are both causes of E
(Fig. 9). This, in our view, is what it means to talk of the causal relationship
C→ E depending on Z.

11Making an arbitrary choice on the indices, we can write the condition as p(a11|ẑ1) =
p(a12|ẑ2) = 1.

12If the description of values is gerrymandered (Section 4), the entropy and stability of
the mapping can be artificially inflated. This measure has been put to work in biology in a
forthcoming paper by Calcott (2017).
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Concepts Relationship Measure

Specificity C→ E I(Ĉ;E), I(Ĉ;E|Ẑ)
Stability Z→ (C→ E) H(A) − I(A; Ẑ)
Interaction Z→ (C→ E) I(Ẑ;E|Ĉ) − I(Ẑ;E)

Table 1: Information-theoretic measures for specificity, stability, and interaction.

To measure our real target, a solution would be to follow the proportionality
constraint and aggregate the values of C and E accordingly.13 Here we propose
to look at another interesting quantity, called the interaction information. Let
us first remark that the (conditional) specificity of Z for the mapping is equal
to the conditional specificity of Z for the effect. That is, I(A; Ẑ|Ĉ) = I(E; Ẑ|Ĉ)
(see Appendix). This term embeds both the information coming from Ẑ alone,
which is here equal to I(E; Ẑ), and the information coming from the interaction
between Ẑ and Ĉ, which is what we are after (Fig. 9).14 To measure this
interaction we compute the quantity I(E; Ẑ; Ĉ) = I(E; Ẑ|Ĉ) − I(E; Ẑ).

This is the interaction information between the three variables. It repre-
sents the portion of the effect of Z on the relationship between C and E that is
not merely a consequence of the direct effect of Z on E. The quantity is zero
if C and Z have entirely non-interactive effects on E. There is no interaction
if and only if, given that we know which value E has taken, learning the value
of the background variable Z gives us no additional information about which
causal arrow from C has been instantiated. That is, interventions on Z do not
cause the same result in E to be produced in a different way. This is the case
for instance in Figure 5 but not in Figure 9.15

We remarked above that the instability of the causal relationship C → E

with respect to a background variable Z must be distinguished from the direct
effect of Z on E. We can now make this point more precise. The first would be
measured by I(E; Ẑ) and the second by I(Ĉ;E; Ẑ). It is probably worth empha-
sizing that a relationship can be unstable with respect to a background variable
but nevertheless have a stable conditional specificity under each background
condition. This comes from the fact that the background variable affects the
mapping between C and E but not necessarily the properties of the mapping, of
which specificity is one. In other words, changing the background may produce
a new mapping, but one that is exactly as specific as the original (Fig. 9).

13This would be done without controlling for Z, to ignore its direct effects on E.
14These components are often referred to as the unique information and the synergistic

information, respectively. Another component of information is often considered: the redun-
dant information (e.g. Williams and Beer 2010). Decomposing multivariate information into
such components is a currently debated topic (Bertschinger et al. 2013a; Bertschinger et al.
2013b; Rauh et al. 2014). Here we assume that C and Z are independently manipulated and
do not share any redundant information with respect to E.

15The interaction information is symmetrical: I(E; Ẑ; Ĉ) = I(E; Ĉ|Ẑ)− I(E; Ĉ) = I(Ẑ; Ĉ|E)−
I(Ẑ; Ĉ). In philosophical terms, there is parity, in our framework, between the causal variable
C and the background variable Z: both C and Z are causal variables in the mapping from
{C,Z} to E.
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Figure 9: Example of interacting causes C and Z with respect to E. If the background
Z is not controlled, the cause C is entirely not specific (assuming, for the ease of
presentation, equiprobability between ẑ1 and ẑ2). Indeed, any intervention ĉ1 or ĉ2

can equiprobably lead to e1 or e2. Thus, I(Ĉ;E) = 0 bit. However, once we know
the background, C is entirely specific: I(Ĉ;E|Ẑ) = 1 bit (assuming, for the ease of
presentation, equiprobability between ĉ1 or ĉ2). The interaction information in this
case is I(Ĉ;E; Ẑ) = I(Ĉ;E|Ẑ) − I(Ĉ;E) = 1 bit. (By design, the same holds when Z is
the focal cause variable and C is as a background variable.)

6. Conclusion

Our information-theoretic framework was originally developed for thinking
about causal specificity within the interventionist approach to causation. In
this paper we have used it to analyse several other key elements of the in-
terventionist account. In Section 2 we showed that the criterion of causation
in Woodward’s interventionist account is equivalent to a non-zero specificity
in the relationship between a cause and its effect. We suggested that the
range of invariance of a causal relationship can be measured by the effective
entropy of the cause for its effect. In Section 3 we argued that different qualita-
tive discussions of specificity correspond to different probability distributions
over the causal variable, leading to measure respectively fine-grained influence,
potential causal control, and actual difference-making. In Section 4 we pro-
posed to make more precise the controversial idea that the description of the
cause should be ‘proportional’ to its effects. Ideal proportionality is achieved
by simultaneously minimising the entropy of the cause whilst maximising its
specificity. This amounts to discretising the cause variable so as to mark all
and only differences that make a difference to the effect variable. We suggested
that some questions in the literature about proportionality concern which vari-
ables to include in a causal graph, rather than the grain of description of a
given variable. In Section 5 we suggested that the ‘stability’ of a causal rela-
tionship is the extent to which that relationship is not affected by additional,
background variables. We offered an information-theoretic analysis of the sta-
bility of causal relationships, where background variables affect the mapping
between the focal cause and the focal effect.

We believe that the work presented here adds precision to some important
elements of the interventionist approach to causation and opens up many po-
tential lines for further research. It goes without saying that the strength and
simplicity of the information theoretic formalism come with limitations. Most
importantly, we are restricted to using nominal variables. Individual values
are different from one another, but not different by any amount. We are thus
unable to capture the idea that highly specific relationships are smooth. This
might mean that the size of changes in the cause corresponds to the size of
changes in the effect, for which we would need metric variables. Alternatively,
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it might mean that adjacent values of causes produce adjacent values of the
effect, for which we would need at least ordinal variables. A related blind-
spot for our approach to stability is whether changes to background variables
have large, small, or negligible, impacts on a causal relationship. We can only
measure how many changes in a background variable have an impact.

There are two possible responses to the intrinsic limitations of some formal
framework. One is to return to a qualitative approach which can encompass
the full richness of the relevant concepts, but at the price of being less clear
about what constitutes that richness. The other is to seek to approach different
aspects of the topic using different formalisms. The interventionist framework
would benefit very greatly from being given a treatment in an entirely different
formalism, such as dynamical systems theory, but that is a project for another
day.
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Appendix

Here we provide a quick primer in information theory, proofs of equations cited
in the text and expand on some ideas of Section 5.

6.1. Entropy, conditional entropy, and mutual information

We recall basic formulas of information theory. For a primer on information
theory, see Cover and Thomas (2006). The Shannon entropy of a variable X is
defined as:

H(X)≡−
∑
i

p(xi) log2 p(xi).

The conditional entropy of a variable X knowing Y is defined as:

H(X|Y)≡−
∑
j

p(yj)
∑
i

p
(
xi
∣∣yj

)
log2 p(xi|yj).

The mutual information of two variables X and Y can be computed as:

I(X; Y) = H(X) −H(X|Y) =
∑
i

∑
j

p
(
xi,yj

)
log2

(
p(xi,yj)

p(xi)p(yj)

)
.

The conditional mutual information of two variables X and Y knowing a third
variable Z can be computed as:

I(X; Y|Z) =
∑
k

p(zk)
∑
i

∑
j

p
(
xi,yj |zk

)
log2

(
p(xi,yj|zk)

p(xi|zk)p(yj|zk)

)
.
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Our measure of specificity of C to E is defined as the mutual information
between Ĉ and E: Spec(C→ E)≡I(Ĉ;E). In the conditional form, it reads:

I(Ĉ;E|Ẑ) =
∑
k

p(ẑk)
∑
i

∑
j

p
(
ĉi, ej

∣∣ ẑk) log2

(
p(ĉi, ej|ẑk)

p(ĉi|ẑk)p(ej|ẑk)

)
.

6.2. Proofs

• We want to prove: I(A; Ẑ|Ĉ) = I(A; Ẑ) when Ĉ and Ẑ are independent. We
start with the plain formula for I(A; Ẑ|Ĉ):

I(A; Ẑ|Ĉ) =
∑
i

p(ĉi)I(A; Ẑ|ĉi)

=
∑
i

p(ĉi)
∑
j

∑
k

p (aij , ẑk|ĉi) log2

(
p(aij , ẑk|ĉi)

p(aij |ĉi)p(ẑk|ĉi)

)

=
∑
i

∑
j

∑
k

p (ĉi)p (aij , ẑk|ĉi) log2

(
p(ĉi)p(aij , ẑk|ĉi)

p(ĉi)p(aij |ĉi)p(ẑk|ĉi)

)

=
∑
i

∑
j

∑
k

p (aij , ẑk, ĉi) log2

(
p(aij , ẑk, ĉi)

p(aij , ĉi)p(ẑk|ĉi)

)
.

Now we use p(aij , ĉi) = p(aij ) and p(aij , ẑk, ĉi) = p(aij , ẑk) (ĉi is necessary
to obtain aij ), as well as p(ẑk|ĉi) = p(ẑk) (independence of Ĉ and Ẑ). We
obtain:

I(A; Ẑ|Ĉ) =
∑
i

∑
j

∑
k

p (aij , ẑk) log2

(
p(aij , ẑk)
p(aij )p(ẑk)

)
= I(A; Ẑ).

• We want to prove: that conditional specificity about the mapping is
conditional specificity about the effect. We can transform I(A; Ẑ|Ĉ), using the
bijection (by construction) between the events (aij ) and (ĉi, ej):

I(A; Ẑ|Ĉ) = I
(
(Ĉ,E); Ẑ|Ĉ

)
= I(E; Ẑ|Ĉ).

Curious readers might wonder what would yield a reciprocal approach to
computing I(A; Ẑ|Ĉ), which would look at how C influences the mapping A,
holding Z in the background. This actually amounts to computing the entropy
of the cause:

I(A; Ĉ|Ẑ) = I
(
(E, Ĉ); Ĉ|Ẑ

)
= H(Ĉ|Ẑ) = H(Ĉ).

The last equality obtains by hypothesis of independence between Ĉ and Ẑ. This
reduction to the entropy of the cause comes from the fact that, by construction
ĉi is necessary to obtain aij (recall that by definition aij≡(ĉi, ej)), while there
is no such condition with respect to Z.
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